Search (3 results, page 1 of 1)

  • × classification_ss:"ST 530"
  1. Pang, B.; Lee, L.: Opinion mining and sentiment analysis (2008) 0.03
    0.025397848 = product of:
      0.10159139 = sum of:
        0.10159139 = weight(_text_:just in 2171) [ClassicSimilarity], result of:
          0.10159139 = score(doc=2171,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.2512576 = fieldWeight in 2171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.03125 = fieldNorm(doc=2171)
      0.25 = coord(1/4)
    
    Abstract
    An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. Opinion Mining and Sentiment Analysis covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. The focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. The survey includes an enumeration of the various applications, a look at general challenges and discusses categorization, extraction and summarization. Finally, it moves beyond just the technical issues, devoting significant attention to the broader implications that the development of opinion-oriented information-access services have: questions of privacy, vulnerability to manipulation, and whether or not reviews can have measurable economic impact. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided. Opinion Mining and Sentiment Analysis is the first such comprehensive survey of this vibrant and important research area and will be of interest to anyone with an interest in opinion-oriented information-seeking systems.
  2. Geiselberger, H. u.a. [Red.]: Big Data : das neue Versprechen der Allwissenheit (2013) 0.01
    0.014201656 = product of:
      0.056806624 = sum of:
        0.056806624 = weight(_text_:und in 3484) [ClassicSimilarity], result of:
          0.056806624 = score(doc=3484,freq=12.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.36014193 = fieldWeight in 3484, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.046875 = fieldNorm(doc=3484)
      0.25 = coord(1/4)
    
    Abstract
    Der Begriff Big Data hat spätestens in diesem Jahr der Überwachung den Durchbruch geschafft - mit dem Sammelband des Suhrkamp Verlags bekommt nun jedermann den Data-Durchblick. ... Experten aus Theorie und Praxis bringen ihre Erfahrungen und Meinungen im Suhrkamp-Werk kurz und präzise auf den Punkt und bieten damit einen guten Überblick über die Thematik, die gerade erst in den Startlöchern steht.
    BK
    54.08 Informatik in Beziehung zu Mensch und Gesellschaft
    Classification
    54.08 Informatik in Beziehung zu Mensch und Gesellschaft
  3. O'Neil, C.: Angriff der Algorithmen : wie sie Wahlen manipulieren, Berufschancen zerstören und unsere Gesundheit gefährden (2017) 0.01
    0.009565885 = product of:
      0.03826354 = sum of:
        0.03826354 = weight(_text_:und in 60) [ClassicSimilarity], result of:
          0.03826354 = score(doc=60,freq=16.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.24258271 = fieldWeight in 60, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.02734375 = fieldNorm(doc=60)
      0.25 = coord(1/4)
    
    Abstract
    Algorithmen nehmen Einfluss auf unser Leben: Von ihnen hängt es ab, ob man etwa einen Kredit für sein Haus erhält und wie viel man für die Krankenversicherung bezahlt. Cathy O'Neil, ehemalige Hedgefonds-Managerin und heute Big-Data-Whistleblowerin, erklärt, wie Algorithmen in der Theorie objektive Entscheidungen ermöglichen, im wirklichen Leben aber mächtigen Interessen folgen. Algorithmen nehmen Einfluss auf die Politik, gefährden freie Wahlen und manipulieren über soziale Netzwerke sogar die Demokratie. Cathy O'Neils dringlicher Appell zeigt, wie sie Diskriminierung und Ungleichheit verstärken und so zu Waffen werden, die das Fundament unserer Gesellschaft erschüttern.
    BK
    54.08 (Informatik in Beziehung zu Mensch und Gesellschaft)
    Classification
    54.08 (Informatik in Beziehung zu Mensch und Gesellschaft)