-
Maas, H.-D.: Indexieren mit AUTINDEX (2006)
0.08
0.076844014 = product of:
0.15368803 = sum of:
0.10197506 = weight(_text_:jedem in 77) [ClassicSimilarity], result of:
0.10197506 = score(doc=77,freq=2.0), product of:
0.43023828 = queryWeight, product of:
6.1293135 = idf(docFreq=262, maxDocs=44421)
0.07019355 = queryNorm
0.23701996 = fieldWeight in 77, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.1293135 = idf(docFreq=262, maxDocs=44421)
0.02734375 = fieldNorm(doc=77)
0.051712967 = weight(_text_:und in 77) [ClassicSimilarity], result of:
0.051712967 = score(doc=77,freq=30.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.33217007 = fieldWeight in 77, product of:
5.477226 = tf(freq=30.0), with freq of:
30.0 = termFreq=30.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.02734375 = fieldNorm(doc=77)
0.5 = coord(2/4)
- Abstract
- Wenn man ein Computerprogramm besitzt, das einem zu fast jedem Textwort dessen grammatische Merkmale bestimmt und außerdem noch seine interne Struktur und einige semantische Informationen liefert, dann fragt man sich irgendwann: Könnte ich nicht auf der Grundlage dieser Angaben einen Text global charakterisieren, etwa indem ich versuche, die wichtigen Wörter dieses Textes zu errechnen? Die häufigsten Textwörter können es nicht sein, denn gerade sie sind sehr nichtssagend. Die seltensten Textwörter sind zwar aussagekräftig, aber sie sind zu viele - die meisten Lemmata eines Textes erscheinen nur ein einziges Mal. Irgendwie müsste man den Wortschatz einschränken können. Die rettende Idee war: Wir tun so, als seien die semantischen Merkmale Wörter, denn dann enthält der Wortschatz dieser Sprache nur noch etwa hundert Elemente, weil unsere morphologische Analyse (Mpro) rund 100 semantische Features verwendet. Wir vermuteten nun, dass die häufig vorkommenden Features wichtig für den Text sind und die selteneren als Ausreißer betrachten werden können. Die Implementierung dieser Idee ist der Urahn unseres Programmpaketes AUTINDEX zur automatischen Indexierung von Texten. Dieses allererste Programm erstellte also zu einem Text eine Statistik der semantischen Merkmale und gab die drei häufigsten Klassen mit den zugehörigen Lemmata aus. Das Ergebnis war verblüffend: Auf den ersten Blick konnte man sehen, worum es in dem Text ging. Bei näherem Hinsehen wurden aber auch Unzulänglichkeiten deutlich. Einige der Schlagwörter waren doch ziemlich nichtssagend, andere hätte man gerne in der Liste gehabt, und schließlich hätte man sich noch eine ganz globale Charakterisierung des Textes durch die Angabe von Fachgebieten gewünscht, etwa in der Form: Der Text hat mit Politik oder Wirtschaft zu tun, er berichtet über einen Unfall, eine Feierlichkeit usw. Es wurde also sofort deutlich, dass das Programm ohne eine weitere Wissensquelle keine wirklich guten Ergebnisse würde liefern können. Man braucht also einen Thesaurus, ein Wörterbuch, in dem einzelne Lemmata und auch mehrwortige Ausdrücke mit zusätzlichen Informationen versehen sind.
Die erste Implementierung wurde in Zusammenarbeit mit dem Fachinformationszentrum Technik (Frankfurt) erstellt. Eine Kontrolle der manuell vergebenen Grob- und Feinklassifizierung der Lexikonartikel des Brockhaus Multimedial und anderer Brockhaus-Lexika wurde mit AUTINDEX in Zusammenarbeit mit BIFAB (Mannheim) durchgeführt. AUTINDEX ist auch Bestandteil des Indexierungs- und Retrievalsystems der Firma AGI (Neustadt/Weinstraße), das in der Landesbibliothek Vorarlberg eingesetzt wird. Weiterhin wird AUTINDEX im System LEWI verwendet, das zusammen mit BIFAB entwickelt wird. Dieses System erlaubt natürlichsprachliche Anfragen an den Brockhaus Multimedial und liefert als Antwort die relevanten Lexikonartikel. Im IAI selbst wurden große Textmengen indexiert (Brockhaus- und Dudenlexika, Zeitungstexte usw.), die man für die Weiterentwicklung diverser Thesauri und Wörterbücher nutzen kann. Beispielsweise kann man sich für ein Wort alle Texte ausgeben lassen, in denen dieses Wort wichtig ist. Dabei sind die Texte nach Wichtigkeit sortiert. Zu einem gegebenen Wort kann man sich auch die Assoziationen oder die möglichen Klassifikationen berechnen lassen. Auf diese Weise kann man einen Thesaurus halbautomatisch erweitern.
- Source
- Information und Sprache: Beiträge zu Informationswissenschaft, Computerlinguistik, Bibliothekswesen und verwandten Fächern. Festschrift für Harald H. Zimmermann. Herausgegeben von Ilse Harms, Heinz-Dirk Luckhardt und Hans W. Giessen
-
Lohmann, H.: KASCADE: Dokumentanreicherung und automatische Inhaltserschließung : Projektbericht und Ergebnisse des Retrievaltests (2000)
0.07
0.0731297 = product of:
0.1462594 = sum of:
0.10197506 = weight(_text_:jedem in 1494) [ClassicSimilarity], result of:
0.10197506 = score(doc=1494,freq=2.0), product of:
0.43023828 = queryWeight, product of:
6.1293135 = idf(docFreq=262, maxDocs=44421)
0.07019355 = queryNorm
0.23701996 = fieldWeight in 1494, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
6.1293135 = idf(docFreq=262, maxDocs=44421)
0.02734375 = fieldNorm(doc=1494)
0.04428434 = weight(_text_:und in 1494) [ClassicSimilarity], result of:
0.04428434 = score(doc=1494,freq=22.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.28445345 = fieldWeight in 1494, product of:
4.690416 = tf(freq=22.0), with freq of:
22.0 = termFreq=22.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.02734375 = fieldNorm(doc=1494)
0.5 = coord(2/4)
- Abstract
- Der Test hat gezeigt, dass die Ergänzung der bibliothekarischen Titelaufnahme um zusätzliche inhaltsrelevante Daten zu einer beeindruckenden Verbesserung der Suchergebnisse führt. Die Dokumentanreicherung sollte daher als Ziel bibliothekarischer Bemühungen um eine Verbesserung des OPAC-Retrievals weiterverfolgt werden. Der im Projekt eingeschlagene Weg, die Inhaltsverzeichnisse zu scannen, erwies sich allerdings als wenig sinnvoll. Zwar erzielte das Scanningverfahren gute Ergebnisse, auch arbeitete die Texterkennungssoftware sehr zuverlässig. Das Scanning bietet darüber hinaus die Möglichkeit, die dabei angefertigte Grafik-Datei mit dem Titelsatz im OPAC zu verknüpfen und so dem Nutzer als Entscheidungshilfe bei der Ergebnismengenbeurteilung an die Hand zu geben. Die Arbeiten am Aufbau der Testdatenbank brachten aber die Erkenntnis, dass die Anreicherung im Wege des Scanning technisch außerordentlich problematisch ist und einen nicht vorauszusehenden und letztlich auch nicht zu rechtfertigenden Aufwand erfordert. Diese Methode der Anreicherung kann daher für einen Praxiseinsatz nicht empfohlen werden.
Abgesehen von diesen Überlegungen müssten für einen praktischen Einsatz der KASCADE-Entwicklungen weitere Voraussetzungen geschaffen werden. Erforderlich wäre zunächst die Optimierung und Rationalisierung der Verfahrensabläufe selbst. Die Teilprogramme unter KasKoll sollten in ein kompaktes Programm integriert werden. Die Sortiervorgänge könnten vereinfacht werden, indem die Deskriptoren in eine relationale Datenbank überführt werden. Letztendlich wirken sich diese Punkte aber vor allem auf die Dauer der Maschinenlaufzeiten aus, die bei der Frage nach den Implementierungskosten letztlich nur eine untergeordnete Rolle spielen. Optimiert werden sollte die Oberfläche zur Steuerung des Verfahrens. Bereits jetzt laufen einige der Programme unter einer menügeführten Windows-Schnittstelle (Kasadew) ab, was für alle Verfahrensteile erreicht werden sollte. Schließlich ist zu klären, unter welchen Bedingungen das Gewichtungsverfahren im Praxisbetrieb ablaufen kann.
Da sich mit jedem Dokument, das zu dem im Gewichtungsverfahren befindlichen Gesamtbestand hinzukommt, die Werte aller bereits gewichteten Deskriptoren ändern können, müsste die Berechnung der Häufigkeitsverteilung jeder Grundform im Prinzip nach jeder Änderung im Dokumentbestand neu berechnet werden. Eine Online-Aktualisierung des Bestandes erscheint daher wenig sinnvoll. In der Praxis könnte eine Neuberechnung in bestimmten zeitlichen Abständen mit einem Abzug des OPAC-Bestandes unabhängig vom eigentlichen Betrieb des OPAC erfolgen, was auch insofern genügen würde, als die zugrunde liegenden Maße auf relativen Häufigkeiten basieren. Dadurch würde nur ein geringer Verzug in der Bereitstellung der aktuellen Gewichte eintreten. Außerdem würde der Zeitfaktor eine nur untergeordnete Rolle spielen, da ein offline ablaufender Gewichtungslauf erst bis zum nächsten Aktualisierungszeitpunkt abgeschlossen sein müsste. Denkbar wäre zusätzlich, für die Zeit zwischen zwei Aktualisierungen des OPACs für die in den Neuzugängen enthaltenen Begriffe Standardgewichte einzusetzen, soweit diese Begriffe bereits in dem Bestand auftreten. Bei entsprechender Optimierung und Rationalisierung der SELIX-Verfahrensabläufe, Nutzung der Gewichte auf der Retrievalseite für ein Ranking der auszugebenden Dokumente und Integration der THEAS-Komponente kann das Verfahren zu einem wirkungsvollen Instrument zur Verbesserung der Retrievaleffektivität weiterentwickelt werden.
- Footnote
- Zugl.: Köln, Fachhochsch., Fachbereich Bibliotheks- und Informationswesen, Hausarbeit
- Imprint
- Düsseldorf : Universitäts- und Landesbibliothek
- Series
- Schriften der Universitäts- und Landesbibliothek Düsseldorf; 31
-
Tavakolizadeh-Ravari, M.: Analysis of the long term dynamics in thesaurus developments and its consequences (2017)
0.06
0.060648944 = product of:
0.12129789 = sum of:
0.048255384 = weight(_text_:und in 4081) [ClassicSimilarity], result of:
0.048255384 = score(doc=4081,freq=20.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.3099608 = fieldWeight in 4081, product of:
4.472136 = tf(freq=20.0), with freq of:
20.0 = termFreq=20.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.03125 = fieldNorm(doc=4081)
0.073042504 = weight(_text_:headings in 4081) [ClassicSimilarity], result of:
0.073042504 = score(doc=4081,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.21444786 = fieldWeight in 4081, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.03125 = fieldNorm(doc=4081)
0.5 = coord(2/4)
- Abstract
- Die Arbeit analysiert die dynamische Entwicklung und den Gebrauch von Thesaurusbegriffen. Zusätzlich konzentriert sie sich auf die Faktoren, die die Zahl von Indexbegriffen pro Dokument oder Zeitschrift beeinflussen. Als Untersuchungsobjekt dienten der MeSH und die entsprechende Datenbank "MEDLINE". Die wichtigsten Konsequenzen sind: 1. Der MeSH-Thesaurus hat sich durch drei unterschiedliche Phasen jeweils logarithmisch entwickelt. Solch einen Thesaurus sollte folgenden Gleichung folgen: "T = 3.076,6 Ln (d) - 22.695 + 0,0039d" (T = Begriffe, Ln = natürlicher Logarithmus und d = Dokumente). Um solch einen Thesaurus zu konstruieren, muss man demnach etwa 1.600 Dokumente von unterschiedlichen Themen des Bereiches des Thesaurus haben. Die dynamische Entwicklung von Thesauri wie MeSH erfordert die Einführung eines neuen Begriffs pro Indexierung von 256 neuen Dokumenten. 2. Die Verteilung der Thesaurusbegriffe erbrachte drei Kategorien: starke, normale und selten verwendete Headings. Die letzte Gruppe ist in einer Testphase, während in der ersten und zweiten Kategorie die neu hinzukommenden Deskriptoren zu einem Thesauruswachstum führen. 3. Es gibt ein logarithmisches Verhältnis zwischen der Zahl von Index-Begriffen pro Aufsatz und dessen Seitenzahl für die Artikeln zwischen einer und einundzwanzig Seiten. 4. Zeitschriftenaufsätze, die in MEDLINE mit Abstracts erscheinen erhalten fast zwei Deskriptoren mehr. 5. Die Findablity der nicht-englisch sprachigen Dokumente in MEDLINE ist geringer als die englische Dokumente. 6. Aufsätze der Zeitschriften mit einem Impact Factor 0 bis fünfzehn erhalten nicht mehr Indexbegriffe als die der anderen von MEDINE erfassten Zeitschriften. 7. In einem Indexierungssystem haben unterschiedliche Zeitschriften mehr oder weniger Gewicht in ihrem Findability. Die Verteilung der Indexbegriffe pro Seite hat gezeigt, dass es bei MEDLINE drei Kategorien der Publikationen gibt. Außerdem gibt es wenige stark bevorzugten Zeitschriften."
- Footnote
- Dissertation, Humboldt-Universität zu Berlin - Institut für Bibliotheks- und Informationswissenschaft.
- Imprint
- Berlin : Humboldt-Universität zu Berlin / Institut für Bibliotheks- und Informationswissenschaft
- Theme
- Konzeption und Anwendung des Prinzips Thesaurus
-
Plaunt, C.; Norgard, B.A.: ¬An association-based method for automatic indexing with a controlled vocabulary (1998)
0.06
0.05591152 = product of:
0.22364607 = sum of:
0.22364607 = weight(_text_:headings in 2794) [ClassicSimilarity], result of:
0.22364607 = score(doc=2794,freq=12.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.6566098 = fieldWeight in 2794, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0390625 = fieldNorm(doc=2794)
0.25 = coord(1/4)
- Abstract
- In this article, we describe and test a two-stage algorithm based on a lexical collocation technique which maps from the lexical clues contained in a document representation into a controlled vocabulary list of subject headings. Using a collection of 4.626 INSPEC documents, we create a 'dictionary' of associations between the lexical items contained in the titles, authors, and abstracts, and controlled vocabulary subject headings assigned to those records by human indexers using a likelihood ratio statistic as the measure of association. In the deployment stage, we use the dictiony to predict which of the controlled vocabulary subject headings best describe new documents when they are presented to the system. Our evaluation of this algorithm, in which we compare the automatically assigned subject headings to the subject headings assigned to the test documents by human catalogers, shows that we can obtain results comparable to, and consistent with, human cataloging. In effect we have cast this as a classic partial match information retrieval problem. We consider the problem to be one of 'retrieving' (or assigning) the most probably 'relevant' (or correct) controlled vocabulary subject headings to a document based on the clues contained in that document
-
Olsgaard, J.N.; Evans, E.J.: Improving keyword indexing (1981)
0.05
0.045651563 = product of:
0.18260625 = sum of:
0.18260625 = weight(_text_:headings in 5064) [ClassicSimilarity], result of:
0.18260625 = score(doc=5064,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.53611964 = fieldWeight in 5064, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.078125 = fieldNorm(doc=5064)
0.25 = coord(1/4)
- Abstract
- This communication examines some of the most frequently cited critisms of keyword indexing. These critisms include (1) absence of general subject headings, (2) limited entry points, and (3) irrelevant indexing. Some solutions are suggested to meet these critisms.
-
Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2012)
0.05
0.045192745 = product of:
0.18077098 = sum of:
0.18077098 = weight(_text_:headings in 2717) [ClassicSimilarity], result of:
0.18077098 = score(doc=2717,freq=4.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.5307314 = fieldWeight in 2717, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=2717)
0.25 = coord(1/4)
- Abstract
- The German subject headings authority file (Schlagwortnormdatei/SWD) provides a broad controlled vocabulary for indexing documents of all subjects. Traditionally used for intellectual subject cataloguing primarily of books the Deutsche Nationalbibliothek (DNB, German National Library) has been working on developping and implementing procedures for automated assignment of subject headings for online publications. This project, its results and problems are sketched in the paper.
-
Short, M.: Text mining and subject analysis for fiction; or, using machine learning and information extraction to assign subject headings to dime novels (2019)
0.05
0.045192745 = product of:
0.18077098 = sum of:
0.18077098 = weight(_text_:headings in 481) [ClassicSimilarity], result of:
0.18077098 = score(doc=481,freq=4.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.5307314 = fieldWeight in 481, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=481)
0.25 = coord(1/4)
- Abstract
- This article describes multiple experiments in text mining at Northern Illinois University that were undertaken to improve the efficiency and accuracy of cataloging. It focuses narrowly on subject analysis of dime novels, a format of inexpensive fiction that was popular in the United States between 1860 and 1915. NIU holds more than 55,000 dime novels in its collections, which it is in the process of comprehensively digitizing. Classification, keyword extraction, named-entity recognition, clustering, and topic modeling are discussed as means of assigning subject headings to improve their discoverability by researchers and to increase the productivity of digitization workflows.
-
Willis, C.; Losee, R.M.: ¬A random walk on an ontology : using thesaurus structure for automatic subject indexing (2013)
0.04
0.044151098 = product of:
0.088302195 = sum of:
0.0152596915 = weight(_text_:und in 2016) [ClassicSimilarity], result of:
0.0152596915 = score(doc=2016,freq=2.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.098018214 = fieldWeight in 2016, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.03125 = fieldNorm(doc=2016)
0.073042504 = weight(_text_:headings in 2016) [ClassicSimilarity], result of:
0.073042504 = score(doc=2016,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.21444786 = fieldWeight in 2016, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.03125 = fieldNorm(doc=2016)
0.5 = coord(2/4)
- Abstract
- Relationships between terms and features are an essential component of thesauri, ontologies, and a range of controlled vocabularies. In this article, we describe ways to identify important concepts in documents using the relationships in a thesaurus or other vocabulary structures. We introduce a methodology for the analysis and modeling of the indexing process based on a weighted random walk algorithm. The primary goal of this research is the analysis of the contribution of thesaurus structure to the indexing process. The resulting models are evaluated in the context of automatic subject indexing using four collections of documents pre-indexed with 4 different thesauri (AGROVOC [UN Food and Agriculture Organization], high-energy physics taxonomy [HEP], National Agricultural Library Thesaurus [NALT], and medical subject headings [MeSH]). We also introduce a thesaurus-centric matching algorithm intended to improve the quality of candidate concepts. In all cases, the weighted random walk improves automatic indexing performance over matching alone with an increase in average precision (AP) of 9% for HEP, 11% for MeSH, 35% for NALT, and 37% for AGROVOC. The results of the analysis support our hypothesis that subject indexing is in part a browsing process, and that using the vocabulary and its structure in a thesaurus contributes to the indexing process. The amount that the vocabulary structure contributes was found to differ among the 4 thesauri, possibly due to the vocabulary used in the corresponding thesauri and the structural relationships between the terms. Each of the thesauri and the manual indexing associated with it is characterized using the methods developed here.
- Theme
- Konzeption und Anwendung des Prinzips Thesaurus
-
Abdul, H.; Khoo, C.: Automatic indexing of medical literature using phrase matching : an exploratory study
0.04
0.036521252 = product of:
0.14608501 = sum of:
0.14608501 = weight(_text_:headings in 3669) [ClassicSimilarity], result of:
0.14608501 = score(doc=3669,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.4288957 = fieldWeight in 3669, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0625 = fieldNorm(doc=3669)
0.25 = coord(1/4)
- Abstract
- Reports the 1st part of a study to apply the technique of phrase matching to the automatic assignment of MeSH subject headings and subheadings to abstracts of periodical articles.
-
Losee, R.M.: ¬A Gray code based ordering for documents on shelves : classification for browsing and retrieval (1992)
0.03
0.031956095 = product of:
0.12782438 = sum of:
0.12782438 = weight(_text_:headings in 2334) [ClassicSimilarity], result of:
0.12782438 = score(doc=2334,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.37528375 = fieldWeight in 2334, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=2334)
0.25 = coord(1/4)
- Abstract
- A document classifier places documents together in a linear arrangement for browsing or high-speed access by human or computerised information retrieval systems. Requirements for document classification and browsing systems are developed from similarity measures, distance measures, and the notion of subject aboutness. A requirement that documents be arranged in decreasing order of similarity as the distance from a given document increases can often not be met. Based on these requirements, information-theoretic considerations, and the Gray code, a classification system is proposed that can classifiy documents without human intervention. A measure of classifier performance is developed, and used to evaluate experimental results comparing the distance between subject headings assigned to documents given classifications from the proposed system and the Library of Congress Classification (LCC) system
-
Shafer, K.: Scorpion Project explores using Dewey to organize the Web (1996)
0.03
0.031956095 = product of:
0.12782438 = sum of:
0.12782438 = weight(_text_:headings in 6818) [ClassicSimilarity], result of:
0.12782438 = score(doc=6818,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.37528375 = fieldWeight in 6818, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=6818)
0.25 = coord(1/4)
- Abstract
- As the amount of accessible information on the WWW increases, so will the cost of accessing it, even if search servcies remain free, due to the increasing amount of time users will have to spend to find needed items. Considers what the seemingly unorganized Web and the organized world of libraries can offer each other. The OCLC Scorpion Project is attempting to combine indexing and cataloguing, specifically focusing on building tools for automatic subject recognition using the technqiues of library science and information retrieval. If subject headings or concept domains can be automatically assigned to electronic items, improved filtering tools for searching can be produced
-
Junger, U.: Can indexing be automated? : the example of the Deutsche Nationalbibliothek (2014)
0.03
0.031956095 = product of:
0.12782438 = sum of:
0.12782438 = weight(_text_:headings in 2969) [ClassicSimilarity], result of:
0.12782438 = score(doc=2969,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.37528375 = fieldWeight in 2969, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=2969)
0.25 = coord(1/4)
- Abstract
- The German Integrated Authority File (Gemeinsame Normdatei, GND), provides a broad controlled vocabulary for indexing documents on all subjects. Traditionally used for intellectual subject cataloging primarily for books, the Deutsche Nationalbibliothek (DNB, German National Library) has been working on developing and implementing procedures for automated assignment of subject headings for online publications. This project, its results, and problems are outlined in this article.
-
Moulaison-Sandy, H.; Adkins, D.; Bossaller, J.; Cho, H.: ¬An automated approach to describing fiction : a methodology to use book reviews to identify affect (2021)
0.03
0.031956095 = product of:
0.12782438 = sum of:
0.12782438 = weight(_text_:headings in 1711) [ClassicSimilarity], result of:
0.12782438 = score(doc=1711,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.37528375 = fieldWeight in 1711, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=1711)
0.25 = coord(1/4)
- Abstract
- Subject headings and genre terms are notoriously difficult to apply, yet are important for fiction. The current project functions as a proof of concept, using a text-mining methodology to identify affective information (emotion and tone) about fiction titles from professional book reviews as a potential first step in automating the subject analysis process. Findings are presented and discussed, comparing results to the range of aboutness and isness information in library cataloging records. The methodology is likewise presented, and how future work might expand on the current project to enhance catalog records through text-mining is explored.
-
Chou, C.; Chu, T.: ¬An analysis of BERT (NLP) for assisted subject indexing for Project Gutenberg (2022)
0.03
0.031956095 = product of:
0.12782438 = sum of:
0.12782438 = weight(_text_:headings in 2141) [ClassicSimilarity], result of:
0.12782438 = score(doc=2141,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.37528375 = fieldWeight in 2141, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0546875 = fieldNorm(doc=2141)
0.25 = coord(1/4)
- Abstract
- In light of AI (Artificial Intelligence) and NLP (Natural language processing) technologies, this article examines the feasibility of using AI/NLP models to enhance the subject indexing of digital resources. While BERT (Bidirectional Encoder Representations from Transformers) models are widely used in scholarly communities, the authors assess whether BERT models can be used in machine-assisted indexing in the Project Gutenberg collection, through suggesting Library of Congress subject headings filtered by certain Library of Congress Classification subclass labels. The findings of this study are informative for further research on BERT models to assist with automatic subject indexing for digital library collections.
-
Gil-Leiva, I.: SISA-automatic indexing system for scientific articles : experiments with location heuristics rules versus TF-IDF rules (2017)
0.03
0.027390938 = product of:
0.10956375 = sum of:
0.10956375 = weight(_text_:headings in 4622) [ClassicSimilarity], result of:
0.10956375 = score(doc=4622,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.32167178 = fieldWeight in 4622, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.046875 = fieldNorm(doc=4622)
0.25 = coord(1/4)
- Abstract
- Indexing is contextualized and a brief description is provided of some of the most used automatic indexing systems. We describe SISA, a system which uses location heuristics rules, statistical rules like term frequency (TF) or TF-IDF to obtain automatic or semi-automatic indexing, depending on the user's preference. The aim of this research is to ascertain which rules (location heuristics rules or TF-IDF rules) provide the best indexing terms. SISA is used to obtain the automatic indexing of 200 scientific articles on fruit growing written in Portuguese. It uses, on the one hand, location heuristics rules founded on the value of certain parts of the articles for indexing such as titles, abstracts, keywords, headings, first paragraph, conclusions and references and, on the other, TF-IDF rules. The indexing is then evaluated to ascertain retrieval performance through recall, precision and f-measure. Automatic indexing of the articles with location heuristics rules provided the best results with the evaluation measures.
-
Thönssen, B.: Automatische Indexierung und Schnittstellen zu Thesauri (1988)
0.02
0.023361538 = product of:
0.09344615 = sum of:
0.09344615 = weight(_text_:und in 29) [ClassicSimilarity], result of:
0.09344615 = score(doc=29,freq=12.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.60023654 = fieldWeight in 29, product of:
3.4641016 = tf(freq=12.0), with freq of:
12.0 = termFreq=12.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.078125 = fieldNorm(doc=29)
0.25 = coord(1/4)
- Abstract
- Über eine Schnittstelle zwischen Programmen zur automatischen Indexierung (PRIMUS-IDX) und zur maschinellen Thesaurusverwaltung (INDEX) sollen große Textmengen schnell, kostengünstig und konsistent erschlossen und verbesserte Recherchemöglichkeiten geschaffen werden. Zielvorstellung ist ein Verfahren, das auf PCs ablauffähig ist und speziell deutschsprachige Texte bearbeiten kann
- Theme
- Konzeption und Anwendung des Prinzips Thesaurus
-
Hauer, M.: Neue Qualitäten in Bibliotheken : Durch Content-Ergänzung, maschinelle Indexierung und modernes Information Retrieval können Recherchen in Bibliothekskatalogen deutlich verbessert werden (2004)
0.02
0.022889536 = product of:
0.09155814 = sum of:
0.09155814 = weight(_text_:und in 1886) [ClassicSimilarity], result of:
0.09155814 = score(doc=1886,freq=18.0), product of:
0.1556822 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.07019355 = queryNorm
0.58810925 = fieldWeight in 1886, product of:
4.2426405 = tf(freq=18.0), with freq of:
18.0 = termFreq=18.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0625 = fieldNorm(doc=1886)
0.25 = coord(1/4)
- Abstract
- Seit Frühjahr 2004 ist Dandelon.com als neues, offenes, internationales Wissenschaftsportal in Betrieb. Erste Retrieval-Tests bescheinigen deutlich bessere Suchergebnisse als in herkömmlichen OPACs oder Verbundsystemen. Seine Daten stammen aus intelligentCAPTURE und Bibliothekskatalogen. intelligentCAPTURE erfasst Content über Scanning oder File-Import oder Web-Spidering und indexiert nach morphosyntaktischen und semantischen Verfahren. Aufbereiteter Content und Indexate gehen an Bibliothekssysteme und an dandelon.com. Dandelon.com ist kostenlos zugänglich für Endbenutzer und ist zugleich Austauschzentrale und Katalogerweiterung für angeschlossene Bibliotheken. Neue Inhalte können so kostengünstig und performant erschlossen werden.
-
Vledutz-Stokolov, N.: Concept recognition in an automatic text-processing system for the life sciences (1987)
0.02
0.022825781 = product of:
0.091303125 = sum of:
0.091303125 = weight(_text_:headings in 2848) [ClassicSimilarity], result of:
0.091303125 = score(doc=2848,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.26805982 = fieldWeight in 2848, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0390625 = fieldNorm(doc=2848)
0.25 = coord(1/4)
- Abstract
- This article describes a natural-language text-processing system designed as an automatic aid to subject indexing at BIOSIS. The intellectual procedure the system should model is a deep indexing with a controlled vocabulary of biological concepts - Concept Headings (CHs). On the average, ten CHs are assigned to each article by BIOSIS indexers. The automatic procedure consists of two stages: (1) translation of natural-language biological titles into title-semantic representations which are in the constructed formalized language of Concept Primitives, and (2) translation of the latter representations into the language of CHs. The first stage is performed by matching the titles agianst the system's Semantic Vocabulary (SV). The SV currently contains approximately 15.000 biological natural-language terms and their translations in the language of Concept Primitives. Tor the ambiguous terms, the SV contains the algorithmical rules of term disambiguation, ruels based on semantic analysis of the contexts. The second stage of the automatic procedure is performed by matching the title representations against the CH definitions, formulated as Boolean search strategies in the language of Concept Primitives. Three experiments performed with the system and their results are decribed. The most typical problems the system encounters, the problems of lexical and situational ambiguities, are discussed. The disambiguation techniques employed are described and demonstrated in many examples
-
Golub, K.; Lykke, M.; Tudhope, D.: Enhancing social tagging with automated keywords from the Dewey Decimal Classification (2014)
0.02
0.022825781 = product of:
0.091303125 = sum of:
0.091303125 = weight(_text_:headings in 3918) [ClassicSimilarity], result of:
0.091303125 = score(doc=3918,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.26805982 = fieldWeight in 3918, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0390625 = fieldNorm(doc=3918)
0.25 = coord(1/4)
- Abstract
- Purpose - The purpose of this paper is to explore the potential of applying the Dewey Decimal Classification (DDC) as an established knowledge organization system (KOS) for enhancing social tagging, with the ultimate purpose of improving subject indexing and information retrieval. Design/methodology/approach - Over 11.000 Intute metadata records in politics were used. Totally, 28 politics students were each given four tasks, in which a total of 60 resources were tagged in two different configurations, one with uncontrolled social tags only and another with uncontrolled social tags as well as suggestions from a controlled vocabulary. The controlled vocabulary was DDC comprising also mappings from the Library of Congress Subject Headings. Findings - The results demonstrate the importance of controlled vocabulary suggestions for indexing and retrieval: to help produce ideas of which tags to use, to make it easier to find focus for the tagging, to ensure consistency and to increase the number of access points in retrieval. The value and usefulness of the suggestions proved to be dependent on the quality of the suggestions, both as to conceptual relevance to the user and as to appropriateness of the terminology. Originality/value - No research has investigated the enhancement of social tagging with suggestions from the DDC, an established KOS, in a user trial, comparing social tagging only and social tagging enhanced with the suggestions. This paper is a final reflection on all aspects of the study.
-
Humphrey, S.M.; Névéol, A.; Browne, A.; Gobeil, J.; Ruch, P.; Darmoni, S.J.: Comparing a rule-based versus statistical system for automatic categorization of MEDLINE documents according to biomedical specialty (2009)
0.02
0.022825781 = product of:
0.091303125 = sum of:
0.091303125 = weight(_text_:headings in 287) [ClassicSimilarity], result of:
0.091303125 = score(doc=287,freq=2.0), product of:
0.3406073 = queryWeight, product of:
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.07019355 = queryNorm
0.26805982 = fieldWeight in 287, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
4.8524013 = idf(docFreq=942, maxDocs=44421)
0.0390625 = fieldNorm(doc=287)
0.25 = coord(1/4)
- Abstract
- Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including, Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing of the documents by the Medical Subject Headings (MeSH) controlled vocabulary in order to assign metaterms (MTs), and Journal Descriptor Indexing (JDI), based on human categorization of about 4,000 journals and statistical associations between journal descriptors (JDs) and textwords in the documents. We evaluate and compare the performance of these systems against a gold standard of humanly assigned categories for 100 MEDLINE documents, using six measures selected from trec_eval. The results show that for five of the measures performance is comparable, and for one measure JDI is superior. We conclude that these results favor JDI, given the significantly greater intellectual overhead involved in human indexing and maintaining a rule base for mapping MeSH terms to MTs. We also note a JDI method that associates JDs with MeSH indexing rather than textwords, and it may be worthwhile to investigate whether this JDI method (statistical) and CISMeF (rule-based) might be combined and then evaluated showing they are complementary to one another.