-
Harries, G.; Wilkinson, D.; Price, L.; Fairclough, R.; Thelwall, M.: Hyperlinks as a data source for science mapping : making sense of it all (2005)
0.11
0.113086134 = product of:
0.45234454 = sum of:
0.45234454 = weight(_text_:hyperlinks in 5654) [ClassicSimilarity], result of:
0.45234454 = score(doc=5654,freq=2.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.9687829 = fieldWeight in 5654, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.09375 = fieldNorm(doc=5654)
0.25 = coord(1/4)
-
Orduña-Malea, E.; Torres-Salinas, D.; López-Cózar, E.D.: Hyperlinks embedded in twitter as a proxy for total external in-links to international university websites (2015)
0.09
0.09423844 = product of:
0.37695375 = sum of:
0.37695375 = weight(_text_:hyperlinks in 3043) [ClassicSimilarity], result of:
0.37695375 = score(doc=3043,freq=8.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.80731905 = fieldWeight in 3043, product of:
2.828427 = tf(freq=8.0), with freq of:
8.0 = termFreq=8.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=3043)
0.25 = coord(1/4)
- Abstract
- Twitter as a potential alternative source of external links for use in webometric analysis is analyzed because of its capacity to embed hyperlinks in different tweets. Given the limitations on searching Twitter's public application programming interface (API), we used the Topsy search engine as a source for compiling tweets. To this end, we took a global sample of 200 universities and compiled all the tweets with hyperlinks to any of these institutions. Further link data was obtained from alternative sources (MajesticSEO and OpenSiteExplorer) in order to compare the results. Thereafter, various statistical tests were performed to determine the correlation between the indicators and the possibility of predicting external links from the collected tweets. The results indicate a high volume of tweets, although they are skewed by the performance of specific universities and countries. The data provided by Topsy correlated significantly with all link indicators, particularly with OpenSiteExplorer (r?=?0.769). Finally, prediction models do not provide optimum results because of high error rates. We conclude that the use of Twitter (via Topsy) as a source of hyperlinks to universities produces promising results due to its high correlation with link indicators, though limited by policies and culture regarding use and presence in social networks.
-
Thelwall, M.; Sud, P.; Wilkinson, D.: Link and co-inlink network diagrams with URL citations or title mentions (2012)
0.08
0.081612885 = product of:
0.32645154 = sum of:
0.32645154 = weight(_text_:hyperlinks in 1057) [ClassicSimilarity], result of:
0.32645154 = score(doc=1057,freq=6.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.69915885 = fieldWeight in 1057, product of:
2.4494898 = tf(freq=6.0), with freq of:
6.0 = termFreq=6.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=1057)
0.25 = coord(1/4)
- Abstract
- Webometric network analyses have been used to map the connectivity of groups of websites to identify clusters, important sites or overall structure. Such analyses have mainly been based upon hyperlink counts, the number of hyperlinks between a pair of websites, although some have used title mentions or URL citations instead. The ability to automatically gather hyperlink counts from Yahoo! ceased in April 2011 and the ability to manually gather such counts was due to cease by early 2012, creating a need for alternatives. This article assesses URL citations and title mentions as possible replacements for hyperlinks in both binary and weighted direct link and co-inlink network diagrams. It also assesses three different types of data for the network connections: hit count estimates, counts of matching URLs, and filtered counts of matching URLs. Results from analyses of U.S. library and information science departments and U.K. universities give evidence that metrics based upon URLs or titles can be appropriate replacements for metrics based upon hyperlinks for both binary and weighted networks, although filtered counts of matching URLs are necessary to give the best results for co-title mention and co-URL citation network diagrams.
-
Cheng, S.; YunTao, P.; JunPeng, Y.; Hong, G.; ZhengLu, Y.; ZhiYu, H.: PageRank, HITS and impact factor for journal ranking (2009)
0.07
0.066636644 = product of:
0.26654658 = sum of:
0.26654658 = weight(_text_:hyperlinks in 3513) [ClassicSimilarity], result of:
0.26654658 = score(doc=3513,freq=4.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.5708608 = fieldWeight in 3513, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=3513)
0.25 = coord(1/4)
- Abstract
- Journal citation measures are one of the most widely used bibliometric tools. The most well-known measure is the ISI Impact Factor, under the standard definition, the impact factor of journal j in a given year is the average number of citations received by papers published in the previous two years of journal j. However, the impact factor has its "intrinsic" limitations, it is a ranking measure based fundamentally on a pure counting of the in-degrees of nodes in the network, and its calculation does not take into account the "impact" or "prestige" of the journals in which the citations appear. Google's PageRank algorithm and Kleinberg's HITS method are webpage ranking algorithm, they compute the scores of webpages based on a combination of the number of hyperlinks that point to the page and the status of pages that the hyperlinks originate from, a page is important if it is pointed to by other important pages. We demonstrate how popular webpage algorithm PageRank and HITS can be used ranking journal, and we compared ISI impact factor, PageRank and HITS for journal ranking, and with PageRank and HITS compute respectively including self-citation and non self-citation, and discussed the merit and shortcomings and the scope of application that the various algorithms are used to rank journal.
-
Vaughan, L.: Uncovering information from social media hyperlinks (2016)
0.07
0.066636644 = product of:
0.26654658 = sum of:
0.26654658 = weight(_text_:hyperlinks in 3892) [ClassicSimilarity], result of:
0.26654658 = score(doc=3892,freq=4.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.5708608 = fieldWeight in 3892, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=3892)
0.25 = coord(1/4)
- Abstract
- Analyzing hyperlink patterns has been a major research topic since the early days of the web. Numerous studies reported uncovering rich information and methodological advances. However, very few studies thus far examined hyperlinks in the rapidly developing sphere of social media. This paper reports a study that helps fill this gap. The study analyzed links originating from tweets to the websites of 3 types of organizations (government, education, and business). Data were collected over an 8-month period to observe the fluctuation and reliability of the individual data set. Hyperlink data from the general web (not social media sites) were also collected and compared with social media data. The study found that the 2 types of hyperlink data correlated significantly and that analyzing the 2 together can help organizations see their relative strength or weakness in the two platforms. The study also found that both types of inlink data correlated with offline measures of organizations' performance. Twitter data from a relatively short period were fairly reliable in estimating performance measures. The timelier nature of social media data as well as the date/time stamps on tweets make this type of data potentially more valuable than that from the general web.
-
Wouters, P.; Vries, R. de: Formally citing the Web (2004)
0.07
0.06529031 = product of:
0.26116124 = sum of:
0.26116124 = weight(_text_:hyperlinks in 4093) [ClassicSimilarity], result of:
0.26116124 = score(doc=4093,freq=6.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.55932707 = fieldWeight in 4093, product of:
2.4494898 = tf(freq=6.0), with freq of:
6.0 = termFreq=6.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.03125 = fieldNorm(doc=4093)
0.25 = coord(1/4)
- Abstract
- How do authors refer to Web-based information sources in their formal scientific publications? It is not yet weIl known how scientists and scholars actually include new types of information sources, available through the new media, in their published work. This article reports an a comparative study of the lists of references in 38 scientific journals in five different scientific and social scientific fields. The fields are sociology, library and information science, biochemistry and biotechnology, neuroscience, and the mathematics of computing. As is weIl known, references, citations, and hyperlinks play different roles in academic publishing and communication. Our study focuses an hyperlinks as attributes of references in formal scholarly publications. The study developed and applied a method to analyze the differential roles of publishing media in the analysis of scientific and scholarly literature references. The present secondary databases that include reference and citation data (the Web of Science) cannot be used for this type of research. By the automated processing and analysis of the full text of scientific and scholarly articles, we were able to extract the references and hyperlinks contained in these references in relation to other features of the scientific and scholarly literature. Our findings show that hyperlinking references are indeed, as expected, abundantly present in the formal literature. They also tend to cite more recent literature than the average reference. The large majority of the references are to Web instances of traditional scientific journals. Other types of Web-based information sources are less weIl represented in the lists of references, except in the case of pure e-journals. We conclude that this can be explained by taking the role of the publisher into account. Indeed, it seems that the shift from print-based to electronic publishing has created new roles for the publisher. By shaping the way scientific references are hyperlinking to other information sources, the publisher may have a large impact an the availability of scientific and scholarly information.
-
Barjak, F.; Li, X.; Thelwall, M.: Which factors explain the Web impact of scientists' personal homepages? (2007)
0.07
0.06529031 = product of:
0.26116124 = sum of:
0.26116124 = weight(_text_:hyperlinks in 1073) [ClassicSimilarity], result of:
0.26116124 = score(doc=1073,freq=6.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.55932707 = fieldWeight in 1073, product of:
2.4494898 = tf(freq=6.0), with freq of:
6.0 = termFreq=6.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.03125 = fieldNorm(doc=1073)
0.25 = coord(1/4)
- Abstract
- In recent years, a considerable body of Webometric research has used hyperlinks to generate indicators for the impact of Web documents and the organizations that created them. The relationship between this Web impact and other, offline impact indicators has been explored for entire universities, departments, countries, and scientific journals, but not yet for individual scientists-an important omission. The present research closes this gap by investigating factors that may influence the Web impact (i.e., inlink counts) of scientists' personal homepages. Data concerning 456 scientists from five scientific disciplines in six European countries were analyzed, showing that both homepage content and personal and institutional characteristics of the homepage owners had significant relationships with inlink counts. A multivariate statistical analysis confirmed that full-text articles are the most linked-to content in homepages. At the individual homepage level, hyperlinks are related to several offline characteristics. Notable differences regarding total inlinks to scientists' homepages exist between the scientific disciplines and the countries in the sample. There also are both gender and age effects: fewer external inlinks (i.e., links from other Web domains) to the homepages of female and of older scientists. There is only a weak relationship between a scientist's recognition and homepage inlinks and, surprisingly, no relationship between research productivity and inlink counts. Contrary to expectations, the size of collaboration networks is negatively related to hyperlink counts. Some of the relationships between hyperlinks to homepages and the properties of their owners can be explained by the content that the homepage owners put on their homepage and their level of Internet use; however, the findings about productivity and collaborations do not seem to have a simple, intuitive explanation. Overall, the results emphasize the complexity of the phenomenon of Web linking, when analyzed at the level of individual pages.
-
Thelwall, M.: Webometrics (2009)
0.06
0.056543067 = product of:
0.22617227 = sum of:
0.22617227 = weight(_text_:hyperlinks in 893) [ClassicSimilarity], result of:
0.22617227 = score(doc=893,freq=2.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.48439145 = fieldWeight in 893, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.046875 = fieldNorm(doc=893)
0.25 = coord(1/4)
- Abstract
- Webometrics is an information science field concerned with measuring aspects of the World Wide Web (WWW) for a variety of information science research goals. It came into existence about five years after the Web was formed and has since grown to become a significant aspect of information science, at least in terms of published research. Although some webometrics research has focused on the structure or evolution of the Web itself or the performance of commercial search engines, most has used data from the Web to shed light on information provision or online communication in various contexts. Most prominently, techniques have been developed to track, map, and assess Web-based informal scholarly communication, for example, in terms of the hyperlinks between academic Web sites or the online impact of digital repositories. In addition, a range of nonacademic issues and groups of Web users have also been analyzed.
-
Thelwall, M.: Extracting macroscopic information from Web links (2001)
0.05
0.04711922 = product of:
0.18847688 = sum of:
0.18847688 = weight(_text_:hyperlinks in 851) [ClassicSimilarity], result of:
0.18847688 = score(doc=851,freq=2.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.40365952 = fieldWeight in 851, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=851)
0.25 = coord(1/4)
- Abstract
- Much has been written about the potential and pitfalls of macroscopic Web-based link analysis, yet there have been no studies that have provided clear statistical evidence that any of the proposed calculations can produce results over large areas of the Web that correlate with phenomena external to the Internet. This article attempts to provide such evidence through an evaluation of Ingwersen's (1998) proposed external Web Impact Factor (WIF) for the original use of the Web: the interlinking of academic research. In particular, it studies the case of the relationship between academic hyperlinks and research activity for universities in Britain, a country chosen for its variety of institutions and the existence of an official government rating exercise for research. After reviewing the numerous reasons why link counts may be unreliable, it demonstrates that four different WIFs do, in fact, correlate with the conventional academic research measures. The WIF delivering the greatest correlation with research rankings was the ratio of Web pages with links pointing at research-based pages to faculty numbers. The scarcity of links to electronic academic papers in the data set suggests that, in contrast to citation analysis, this WIF is measuring the reputations of universities and their scholars, rather than the quality of their publications
-
Amitay, E.; Carmel, D.; Herscovici, M.; Lempel, R.; Soffer, A.: Trend detection through temporal link analysis (2004)
0.05
0.04711922 = product of:
0.18847688 = sum of:
0.18847688 = weight(_text_:hyperlinks in 4092) [ClassicSimilarity], result of:
0.18847688 = score(doc=4092,freq=2.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.40365952 = fieldWeight in 4092, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=4092)
0.25 = coord(1/4)
- Abstract
- Although time has been recognized as an important dimension in the co-citation literature, to date it has not been incorporated into the analogous process of link analysis an the Web. In this paper, we discuss several aspects and uses of the time dimension in the context of Web information retrieval. We describe the ideal casewhere search engines track and store temporal data for each of the pages in their repository, assigning timestamps to the hyperlinks embedded within the pages. We introduce several applications which benefit from the availability of such timestamps. To demonstrate our claims, we use a somewhat simplistic approach, which dates links by approximating the age of the page's content. We show that by using this crude measure alone it is possible to detect and expose significant events and trends. We predict that by using more robust methods for tracking modifications in the content of pages, search engines will be able to provide results that are more timely and better reflect current real-life trends than those they provide today.
-
Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003)
0.05
0.04711922 = product of:
0.18847688 = sum of:
0.18847688 = weight(_text_:hyperlinks in 176) [ClassicSimilarity], result of:
0.18847688 = score(doc=176,freq=2.0), product of:
0.46692044 = queryWeight, product of:
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.06390027 = queryNorm
0.40365952 = fieldWeight in 176, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.3070183 = idf(docFreq=80, maxDocs=44421)
0.0390625 = fieldNorm(doc=176)
0.25 = coord(1/4)
- Abstract
- Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
-
Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006)
0.04
0.04383175 = product of:
0.175327 = sum of:
0.175327 = weight(_text_:java in 272) [ClassicSimilarity], result of:
0.175327 = score(doc=272,freq=2.0), product of:
0.45033762 = queryWeight, product of:
7.0475073 = idf(docFreq=104, maxDocs=44421)
0.06390027 = queryNorm
0.38932347 = fieldWeight in 272, product of:
1.4142135 = tf(freq=2.0), with freq of:
2.0 = termFreq=2.0
7.0475073 = idf(docFreq=104, maxDocs=44421)
0.0390625 = fieldNorm(doc=272)
0.25 = coord(1/4)
- Abstract
- This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
-
Stock, W.G.: Themenanalytische informetrische Methoden (1990)
0.02
0.02105329 = product of:
0.08421316 = sum of:
0.08421316 = weight(_text_:und in 5133) [ClassicSimilarity], result of:
0.08421316 = score(doc=5133,freq=6.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.5942039 = fieldWeight in 5133, product of:
2.4494898 = tf(freq=6.0), with freq of:
6.0 = termFreq=6.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.109375 = fieldNorm(doc=5133)
0.25 = coord(1/4)
- Source
- Psychologie und Philosophie der Grazer Schule: eine Dokumentation zu Werk und Wirkungsgeschichte. Hrsg.: M. Stock und W.G. Stock
-
Schwendtke, A.: Wissenschaftssystematik und Scientometrologie (1979)
0.02
0.02083735 = product of:
0.0833494 = sum of:
0.0833494 = weight(_text_:und in 76) [ClassicSimilarity], result of:
0.0833494 = score(doc=76,freq=8.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.58810925 = fieldWeight in 76, product of:
2.828427 = tf(freq=8.0), with freq of:
8.0 = termFreq=8.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.09375 = fieldNorm(doc=76)
0.25 = coord(1/4)
- Source
- Klassifikation und Erkenntnis I. Proc. der Plenarvorträge und der Sektion 1 "Klassifikation und Wissensgewinnung" der 3. Fachtagung der Gesellschaft für Klassifikation, Königstein/Ts., 5.-6.4.1979
-
Schlögl, C.; Gorraiz, J.: Sind Downloads die besseren Zeitschriftennutzungsdaten? : Ein Vergleich von Download- und Zitationsidikatoren (2012)
0.02
0.018232683 = product of:
0.07293073 = sum of:
0.07293073 = weight(_text_:und in 1154) [ClassicSimilarity], result of:
0.07293073 = score(doc=1154,freq=18.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.5145956 = fieldWeight in 1154, product of:
4.2426405 = tf(freq=18.0), with freq of:
18.0 = termFreq=18.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0546875 = fieldNorm(doc=1154)
0.25 = coord(1/4)
- Abstract
- In diesem Beitrag werden am Beispiel von Onkologie- und Pharmaziezeitschriften Unterschiede zwischen und Gemeinsamkeiten von Downloads und Zitaten herausgearbeitet. Die Download-Daten wurden von Elsevier (ScienceDirect) bereitgestellt, die Zitationsdaten wurden den Journal Citation Reports entnommen bzw. aus dem Web of Science recherchiert. Die Ergebnisse zeigen einen hohen Zusammenhang zwischen Download- und Zitationshäufigkeiten, der für die relativen Zeitschriftenindikatoren und auf Artikelebene etwas geringer ist. Deutliche Unterschiede bestehen hingegen zwischen den Altersstrukturen der herunter-geladenen und der zitierten Artikel. Elektronische Zeitschriften haben maßgeblich dazu beigetragen, dass aktuelle Literatur früher aufgegriffen und deutlich öfter zitiert wird, im Schnitt hat sich das Alter der zitierten Literatur in den letzten zehn Jahren aber kaum verändert.
- Source
- Zeitschrift für Bibliothekswesen und Bibliographie. 59(2012) H.2, S.87-95
-
Ball, R.: Wissenschaftsindikatoren im Zeitalter digitaler Wissenschaft (2007)
0.02
0.017898876 = product of:
0.071595505 = sum of:
0.071595505 = weight(_text_:und in 1875) [ClassicSimilarity], result of:
0.071595505 = score(doc=1875,freq=34.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.50517434 = fieldWeight in 1875, product of:
5.8309517 = tf(freq=34.0), with freq of:
34.0 = termFreq=34.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0390625 = fieldNorm(doc=1875)
0.25 = coord(1/4)
- Abstract
- Die Bereitstellung und Nutzung digitaler Bibliotheken entwickelt sich allmählich zum Standard der Literatur und Informationsversorgung in Wissenschaft und Forschung. Ganzen Disziplinen genügt oftmals die verfügbare digitale Information, Printmedien werden besonders im STM-Segment zu einem Nischenprodukt. Digitale Texte können beliebig eingebaut, kopiert und nachgenutzt werden, die Verlinkung zwischen Metadaten und Volltexten bringt weitere Nutzungsvorteile. Dabei sind die Angebote von Digital Libraries Bestandteil eines ganzheitlichen digitalen Ansatzes, wonach die elektronische Informations- und Literaturversorgung integraler Bestandteil von E-Science (Enhanced Science) oder Cyberinfrastructure darstellt. Hierbei verschmelzen dann Produktion, Diskussion, Distribution und Rezeption der wissenschaftlichen Inhalte auf einer einzigen digitalen Plattform. Damit sind dann nicht nur die Literatur- und Informationsversorgung (Digital Libraries), sondern auch die Wissenschaft selbst digital geworden. Diese dramatische Veränderung in der Wissenschaftskommunikation hat direkte Auswirkungen auf die Messung der Wissenschaftskommunikation, also auf die Evaluation von wissenschaftlichem Output. Bisherige Systeme der Wissenschaftsvermessung basieren hauptsächlich auf bibliometrischen Analysen, d.h. der Quantifizierung des Outputs und dessen Rezeption (Zitierhäufigkeit). Basis dafür sind insbesondere im STM-Bereich die international anerkannten Datenbanken des ISI (Thomson Scientific) insbesondere der Science Citation Index, SCI) oder vielleicht zukünftig das Konkurrenzprodukt SCOPUS des Wissenschaftskonzerns Reed Elsevier. Die Digitalisierung der Wissenschaft in ihrem kompletten Lebenszyklus, die zunehmende Nutzung und Akzeptanz von Dokumentenrepositorien, Institutsservern und anderen elektronischen Publikationsformen im Rahmen von E-Science erfordern und ermöglichen zugleich den Nachweis von Output und Rezeption durch neue bibliometrische Formen, etwa der Webometrie (Webmetrics). Im vorliegenden Paper haben wir hierzu Analysen durchgeführt und stellen eine Abschätzung vor, wie sich der Anteil von webometrisch erfassbarer und zugänglicher wissenschaftlicher Literatur im Vergleich zu Literatur, die mit den Standardsystemen nachgewiesen werden kann im Laufe der letzten Jahre verändert hat. Dabei haben wir unterschiedliche Disziplinen und Länder berücksichtigt. Zudem wird ein Vergleich der webometrischen Nachweisqualität so unterschiedlicher Systeme wie SCI, SCOPUS und Google Scholar vorgestellt.
-
Herfurth, M.: Voraussetzungen und Entwicklungsperspektiven scientometrischer Analysen auf der Grundlage von Datenbanken (1994)
0.02
0.017189939 = product of:
0.068759754 = sum of:
0.068759754 = weight(_text_:und in 438) [ClassicSimilarity], result of:
0.068759754 = score(doc=438,freq=4.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.48516542 = fieldWeight in 438, product of:
2.0 = tf(freq=4.0), with freq of:
4.0 = termFreq=4.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.109375 = fieldNorm(doc=438)
0.25 = coord(1/4)
- Source
- Qualität und Information: Deutscher Dokumentartag 1993; Friedrich-Schiller-Universität Jena, 28.-30.9.1993. Hrsg.: W. Neubauer
-
Tüür-Fröhlich, T.: Closed vs. Open Access : Szientometrische Untersuchung dreier sozialwissenschaftlicher Zeitschriften aus der Genderperspektive (2011)
0.02
0.017189939 = product of:
0.068759754 = sum of:
0.068759754 = weight(_text_:und in 505) [ClassicSimilarity], result of:
0.068759754 = score(doc=505,freq=16.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.48516542 = fieldWeight in 505, product of:
4.0 = tf(freq=16.0), with freq of:
16.0 = termFreq=16.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0546875 = fieldNorm(doc=505)
0.25 = coord(1/4)
- Abstract
- Der Artikel ist Teil einer größeren Untersuchung zu den Potentialen von Open Access Publishing zur Erhöhung der Publikations- und damit Karrierechancen von Sozialwissenschaftlerinnen. Es werden drei inhaltlich und methodisch ähnliche sozialwissenschaftliche Zeitschriften verglichen: das Open-Access-Journal "Forum Qualitative Sozialforschung" ("FQS") und die zwei Closed-Access-/Hybridjournale "Zeitschrift für qualitative Forschung" und "Sozialer Sinn". Erhoben wird (a) der jeweilige Frauenanteil unter Redaktions- und Beiratsmitgliedern dieser drei Zeitschriften (N=184 insgesamt), (b) aufwändig rekonstruiert und analysiert wird die Genderstruktur der Autorenschaften aller in den drei Zeitschriften zwischen 2000 und 2008 veröffentlichten Beiträge (Totalerhebung, N=1557 insgesamt).
- Source
- Information - Wissenschaft und Praxis. 62(2011) H.4, S.173-176
-
Tüür-Fröhlich, T.: Blackbox SSCI : Datenerfassung und Datenverarbeitung bei der kommerziellen Indexierung von Zitaten (2019)
0.02
0.016242964 = product of:
0.06497186 = sum of:
0.06497186 = weight(_text_:und in 779) [ClassicSimilarity], result of:
0.06497186 = score(doc=779,freq=28.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.45843822 = fieldWeight in 779, product of:
5.2915025 = tf(freq=28.0), with freq of:
28.0 = termFreq=28.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0390625 = fieldNorm(doc=779)
0.25 = coord(1/4)
- Abstract
- Zahlreiche Autoren, Autorinnen und kritische Initiativen (z. B. DORA) kritisieren den zu hohen und schädlichen Einfluss quantitativer Daten, welche akademische Instanzen für Evaluationszwecke heranziehen. Wegen des großen Einflusses der globalen Zitatdatenbanken von Thomson Reuters (bzw. Clarivate Analytics) auf die Bewertung der wissenschaftlichen Leistungen von Forscherinnen und Forschern habe ich extensive qualitative und quantitative Fallstudien zur Datenqualität des Social Sciences Citation Index (SSCI) durchgeführt, d. h. die Originaleinträge mit den SSCI-Datensätzen verglichen. Diese Fallstudien zeigten schwerste - nie in der Literatur erwähnte - Fehler, Verstümmelungen, Phantomautoren, Phantomwerke (Fehlerrate in der Fallstudie zu Beebe 2010, Harvard Law Review: 99 Prozent). Über die verwendeten Datenerfassungs- und Indexierungsverfahren von TR bzw. Clarivate Analytics ist nur wenig bekannt. Ein Ergebnis meiner Untersuchungen: Bei der Indexierung von Verweisen in Fußnoten (wie in den Rechtswissenschaften, gerade auch der USA, vorgeschrieben) scheinen die verwendeten Textanalyse-Anwendungen und -Algorithmen völlig überfordert. Eine Qualitätskontrolle scheint nicht stattzufinden. Damit steht der Anspruch des SSCI als einer multidisziplinären Datenbank zur Debatte. Korrekte Zitate in den Fußnoten des Originals können zu Phantom-Autoren, Phantom-Werken und Phantom-Referenzen degenerieren. Das bedeutet: Sämtliche Zeitschriften und Disziplinen, deren Zeitschriften und Büchern dieses oder ähnliche Zitierverfahren verwenden (Oxford-Style), laufen Gefahr, aufgrund starker Zitatverluste falsch, d. h. unterbewertet, zu werden. Wie viele UBOs (Unidentifiable Bibliographic Objects) sich in den Datenbanken SCI, SSCI und AHCI befinden, wäre nur mit sehr aufwändigen Prozeduren zu klären. Unabhängig davon handelt es sich, wie bei fast allen in meinen Untersuchungen gefundenen fatalen Fehlern, eindeutig um endogene Fehler in den Datenbanken, die nicht, wie oft behauptet, angeblich falsch zitierenden Autorinnen und Autoren zugeschrieben werden können, sondern erst im Laufe der Dateneingabe und -verarbeitung entstehen.
- Source
- Information - Wissenschaft und Praxis. 70(2019) H.5/6, S.241-248
-
Zitaten-Statistiken (2008)
0.02
0.016079715 = product of:
0.06431886 = sum of:
0.06431886 = weight(_text_:und in 218) [ClassicSimilarity], result of:
0.06431886 = score(doc=218,freq=14.0), product of:
0.14172435 = queryWeight, product of:
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.06390027 = queryNorm
0.4538307 = fieldWeight in 218, product of:
3.7416575 = tf(freq=14.0), with freq of:
14.0 = termFreq=14.0
2.217899 = idf(docFreq=13141, maxDocs=44421)
0.0546875 = fieldNorm(doc=218)
0.25 = coord(1/4)
- Abstract
- Die International Mathematical Union (IMU) hat in Kooperation mit dem "International Council of Industrial and Applied Mathematics (ICIAM)" und dem "Institute of Mathematical Statistics (IMS)" einen Bericht mit dem Titel Citation Statistics herausgegeben, für den das "Joint Committee on Quantitative Assessment of Research", bestehend aus Robert Adler, John Ewing (Chair) und Peter Taylor verantwortlich zeichnet. Wir drucken im Folgenden zunächst das "Executive Summary" dieses Berichts ab und geben anschließend einen Überblick über einige der wichtigsten Argumente und Ergebnisse des Berichts. Die darin wiedergegebenen Tabellen und Grafiken sind dem Bericht entnommen, wir danken den Autoren für die Genehmigung des Abdrucks des Executive Summary und dieser Tabellen und Grafiken. Soweit wir den Bericht in Übersetzung zitieren, handelt es sich nicht um eine autorisierte Übersetzung.