Search (50 results, page 1 of 3)

  • × theme_ss:"Retrievalalgorithmen"
  1. Abdelkareem, M.A.A.: In terms of publication index, what indicator is the best for researchers indexing, Google Scholar, Scopus, Clarivate or others? (2018) 0.04
    0.044446234 = product of:
      0.17778493 = sum of:
        0.17778493 = weight(_text_:just in 548) [ClassicSimilarity], result of:
          0.17778493 = score(doc=548,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.43970078 = fieldWeight in 548, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.0546875 = fieldNorm(doc=548)
      0.25 = coord(1/4)
    
    Abstract
    I believe that Google Scholar is the most popular academic indexing way for researchers and citations. However, some other indexing institutions may be more professional than Google Scholar but not as popular as Google Scholar. Other indexing websites like Scopus and Clarivate are providing more statistical figures for scholars, institutions or even journals. On account of publication citations, always Google Scholar shows higher citations for a paper than other indexing websites since Google Scholar consider most of the publication platforms so he can easily count the citations. While other databases just consider the citations come from those journals that are already indexed in their database
  2. Witschel, H.F.: Global term weights in distributed environments (2008) 0.04
    0.03809677 = product of:
      0.15238708 = sum of:
        0.15238708 = weight(_text_:just in 3096) [ClassicSimilarity], result of:
          0.15238708 = score(doc=3096,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.3768864 = fieldWeight in 3096, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.046875 = fieldNorm(doc=3096)
      0.25 = coord(1/4)
    
    Abstract
    This paper examines the estimation of global term weights (such as IDF) in information retrieval scenarios where a global view on the collection is not available. In particular, the two options of either sampling documents or of using a reference corpus independent of the target retrieval collection are compared using standard IR test collections. In addition, the possibility of pruning term lists based on frequency is evaluated. The results show that very good retrieval performance can be reached when just the most frequent terms of a collection - an "extended stop word list" - are known and all terms which are not in that list are treated equally. However, the list cannot always be fully estimated from a general-purpose reference corpus, but some "domain-specific stop words" need to be added. A good solution for achieving this is to mix estimates from small samples of the target retrieval collection with ones derived from a reference corpus.
  3. Hoenkamp, E.; Bruza, P.D.; Song, D.; Huang, Q.: ¬An effective approach to verbose queries using a limited dependencies language model (2009) 0.04
    0.035917982 = product of:
      0.14367193 = sum of:
        0.14367193 = weight(_text_:just in 3122) [ClassicSimilarity], result of:
          0.14367193 = score(doc=3122,freq=4.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.3553319 = fieldWeight in 3122, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.03125 = fieldNorm(doc=3122)
      0.25 = coord(1/4)
    
    Abstract
    Intuitively, any 'bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distributions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
  4. Hoenkamp, E.: Unitary operators on the document space (2003) 0.03
    0.03174731 = product of:
      0.12698925 = sum of:
        0.12698925 = weight(_text_:just in 4457) [ClassicSimilarity], result of:
          0.12698925 = score(doc=4457,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.314072 = fieldWeight in 4457, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.0390625 = fieldNorm(doc=4457)
      0.25 = coord(1/4)
    
    Abstract
    When people search for documents, they eventually want content, not words. Hence, search engines should relate documents more by their underlying concepts than by the words they contain. One promising technique to do so is Latent Semantic Indexing (LSI). LSI dramatically reduces the dimension of the document space by mapping it into a space spanned by conceptual indices. Empirically, the number of concepts that can represent the documents are far fewer than the great variety of words in the textual representation. Although this almost obviates the problem of lexical matching, the mapping incurs a high computational cost compared to document parsing, indexing, query matching, and updating. This article accomplishes several things. First, it shows how the technique underlying LSI is just one example of a unitary operator, for which there are computationally more attractive alternatives. Second, it proposes the Haar transform as such an alternative, as it is memory efficient, and can be computed in linear to sublinear time. Third, it generalizes LSI by a multiresolution representation of the document space. The approach not only preserves the advantages of LSI at drastically reduced computational costs, it also opens a spectrum of possibilities for new research.
  5. Ye, Z.; Huang, J.X.: ¬A learning to rank approach for quality-aware pseudo-relevance feedback (2016) 0.03
    0.03174731 = product of:
      0.12698925 = sum of:
        0.12698925 = weight(_text_:just in 3855) [ClassicSimilarity], result of:
          0.12698925 = score(doc=3855,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.314072 = fieldWeight in 3855, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.0390625 = fieldNorm(doc=3855)
      0.25 = coord(1/4)
    
    Abstract
    Pseudo relevance feedback (PRF) has shown to be effective in ad hoc information retrieval. In traditional PRF methods, top-ranked documents are all assumed to be relevant and therefore treated equally in the feedback process. However, the performance gain brought by each document is different as showed in our preliminary experiments. Thus, it is more reasonable to predict the performance gain brought by each candidate feedback document in the process of PRF. We define the quality level (QL) and then use this information to adjust the weights of feedback terms in these documents. Unlike previous work, we do not make any explicit relevance assumption and we go beyond just selecting "good" documents for PRF. We propose a quality-based PRF framework, in which two quality-based assumptions are introduced. Particularly, two different strategies, relevance-based QL (RelPRF) and improvement-based QL (ImpPRF) are presented to estimate the QL of each feedback document. Based on this, we select a set of heterogeneous document-level features and apply a learning approach to evaluate the QL of each feedback document. Extensive experiments on standard TREC (Text REtrieval Conference) test collections show that our proposed model performs robustly and outperforms strong baselines significantly.
  6. Karisani, P.; Rahgozar, M.; Oroumchian, F.: Transforming LSA space dimensions into a rubric for an automatic assessment and feedback system (2016) 0.03
    0.03174731 = product of:
      0.12698925 = sum of:
        0.12698925 = weight(_text_:just in 3970) [ClassicSimilarity], result of:
          0.12698925 = score(doc=3970,freq=2.0), product of:
            0.40433162 = queryWeight, product of:
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.07111865 = queryNorm
            0.314072 = fieldWeight in 3970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6853104 = idf(docFreq=409, maxDocs=44421)
              0.0390625 = fieldNorm(doc=3970)
      0.25 = coord(1/4)
    
    Abstract
    Pseudo-relevance feedback is the basis of a category of automatic query modification techniques. Pseudo-relevance feedback methods assume the initial retrieved set of documents to be relevant. Then they use these documents to extract more relevant terms for the query or just re-weigh the user's original query. In this paper, we propose a straightforward, yet effective use of pseudo-relevance feedback method in detecting more informative query terms and re-weighting them. The query-by-query analysis of our results indicates that our method is capable of identifying the most important keywords even in short queries. Our main idea is that some of the top documents may contain a closer context to the user's information need than the others. Therefore, re-examining the similarity of those top documents and weighting this set based on their context could help in identifying and re-weighting informative query terms. Our experimental results in standard English and Persian test collections show that our method improves retrieval performance, in terms of MAP criterion, up to 7% over traditional query term re-weighting methods.
  7. Green, R.: Topical relevance relationships : 2: an exploratory study and preliminary typology (1995) 0.03
    0.02775193 = product of:
      0.11100772 = sum of:
        0.11100772 = weight(_text_:headings in 3792) [ClassicSimilarity], result of:
          0.11100772 = score(doc=3792,freq=2.0), product of:
            0.34509623 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.07111865 = queryNorm
            0.32167178 = fieldWeight in 3792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.046875 = fieldNorm(doc=3792)
      0.25 = coord(1/4)
    
    Abstract
    The assumption of topic matching between user needs and texts topically relevant to those needs is often erroneous. Reports an emprical investigantion of the question 'what relationship types actually account for topical relevance'? In order to avoid the bias to topic matching search strategies, user needs are back generated from a randomly selected subset of the subject headings employed in a user oriented topical concordance. The corresponding relevant texts are those indicated in the concordance under the subject heading. Compares the topics of the user needs with the topics of the relevant texts to determine the relationships between them. Topical relevance relationships include a large variety of relationships, only some of which are matching relationships. Others are examples of paradigmatic or syntagmatic relationships. There appear to be no constraints on the kinds of relationships that can function as topical relevance relationships. They are distinguishable from other types of relationships only on functional grounds
  8. Mandl, T.: Web- und Multimedia-Dokumente : Neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen (2003) 0.02
    0.01893554 = product of:
      0.07574216 = sum of:
        0.07574216 = weight(_text_:und in 2734) [ClassicSimilarity], result of:
          0.07574216 = score(doc=2734,freq=12.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.48018923 = fieldWeight in 2734, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=2734)
      0.25 = coord(1/4)
    
    Abstract
    Die Menge an Daten im Internet steigt weiter rapide an. Damit wächst auch der Bedarf an qualitativ hochwertigen Information Retrieval Diensten zur Orientierung und problemorientierten Suche. Die Entscheidung für die Benutzung oder Beschaffung von Information Retrieval Software erfordert aussagekräftige Evaluierungsergebnisse. Dieser Beitrag stellt neuere Entwicklungen bei der Evaluierung von Information Retrieval Systemen vor und zeigt den Trend zu Spezialisierung und Diversifizierung von Evaluierungsstudien, die den Realitätsgrad derErgebnisse erhöhen. DerSchwerpunkt liegt auf dem Retrieval von Fachtexten, Internet-Seiten und Multimedia-Objekten.
    Source
    Information - Wissenschaft und Praxis. 54(2003) H.4, S.203-210
  9. Nagelschmidt, M.: Verfahren zur Anfragemodifikation im Information Retrieval (2008) 0.02
    0.018334258 = product of:
      0.07333703 = sum of:
        0.07333703 = weight(_text_:und in 3774) [ClassicSimilarity], result of:
          0.07333703 = score(doc=3774,freq=20.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.4649412 = fieldWeight in 3774, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.046875 = fieldNorm(doc=3774)
      0.25 = coord(1/4)
    
    Abstract
    Für das Modifizieren von Suchanfragen kennt das Information Retrieval vielfältige Möglichkeiten. Nach einer einleitenden Darstellung der Wechselwirkung zwischen Informationsbedarf und Suchanfrage wird eine konzeptuelle und typologische Annäherung an Verfahren zur Anfragemodifikation gegeben. Im Anschluss an eine kurze Charakterisierung des Fakten- und des Information Retrieval, sowie des Vektorraum- und des probabilistischen Modells, werden intellektuelle, automatische und interaktive Modifikationsverfahren vorgestellt. Neben klassischen intellektuellen Verfahren, wie der Blockstrategie und der "Citation Pearl Growing"-Strategie, umfasst die Darstellung der automatischen und interaktiven Verfahren Modifikationsmöglichkeiten auf den Ebenen der Morphologie, der Syntax und der Semantik von Suchtermen. Darüber hinaus werden das Relevance Feedback, der Nutzen informetrischer Analysen und die Idee eines assoziativen Retrievals auf der Basis von Clustering- und terminologischen Techniken, sowie zitationsanalytischen Verfahren verfolgt. Ein Eindruck für die praktischen Gestaltungsmöglichkeiten der behandelten Verfahren soll abschließend durch fünf Anwendungsbeispiele vermittelt werden.
  10. Fuhr, N.: Zur Überwindung der Diskrepanz zwischen Retrievalforschung und -praxis (1990) 0.02
    0.017285705 = product of:
      0.06914282 = sum of:
        0.06914282 = weight(_text_:und in 6624) [ClassicSimilarity], result of:
          0.06914282 = score(doc=6624,freq=10.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.4383508 = fieldWeight in 6624, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=6624)
      0.25 = coord(1/4)
    
    Abstract
    In diesem Beitrag werden einige Forschungsergebnisse des Information Retrieval vorgestellt, die unmittelbar zur Verbesserung der Retrievalqualität für bereits existierende Datenbanken eingesetzt werden können: Linguistische Algorithmen zur Grund- und Stammformreduktion unterstützen die Suche nach Flexions- und Derivationsformen von Suchtermen. Rankingalgorithmen, die Frage- und Dokumentterme gewichten, führen zu signifikant besseren Retrievalergebnissen als beim Booleschen Retrieval. Durch Relevance Feedback können die Retrievalqualität weiter gesteigert und außerdem der Benutzer bei der sukzessiven Modifikation seiner Frageformulierung unterstützt werden. Es wird eine benutzerfreundliche Bedienungsoberfläche für ein System vorgestellt, das auf diesen Konzepten basiert.
  11. Tober, M.; Hennig, L.; Furch, D.: SEO Ranking-Faktoren und Rang-Korrelationen 2014 : Google Deutschland (2014) 0.02
    0.017285705 = product of:
      0.06914282 = sum of:
        0.06914282 = weight(_text_:und in 2484) [ClassicSimilarity], result of:
          0.06914282 = score(doc=2484,freq=10.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.4383508 = fieldWeight in 2484, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=2484)
      0.25 = coord(1/4)
    
    Abstract
    Dieses Whitepaper beschäftigt sich mit der Definition und Bewertung von Faktoren, die eine hohe Rangkorrelation-Koeffizienz mit organischen Suchergebnissen aufweisen und dient dem Zweck der tieferen Analyse von Suchmaschinen-Algorithmen. Die Datenerhebung samt Auswertung bezieht sich auf Ranking-Faktoren für Google-Deutschland im Jahr 2014. Zusätzlich wurden die Korrelationen und Faktoren unter anderem anhand von Durchschnitts- und Medianwerten sowie Entwicklungstendenzen zu den Vorjahren hinsichtlich ihrer Relevanz für vordere Suchergebnis-Positionen interpretiert.
  12. Behnert, C.; Borst, T.: Neue Formen der Relevanz-Sortierung in bibliothekarischen Informationssystemen : das DFG-Projekt LibRank (2015) 0.02
    0.017285705 = product of:
      0.06914282 = sum of:
        0.06914282 = weight(_text_:und in 392) [ClassicSimilarity], result of:
          0.06914282 = score(doc=392,freq=10.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.4383508 = fieldWeight in 392, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=392)
      0.25 = coord(1/4)
    
    Abstract
    Das von der DFG geförderte Projekt LibRank erforscht neue Rankingverfahren für bibliothekarische Informationssysteme, die aufbauend auf Erkenntnissen aus dem Bereich Websuche qualitätsinduzierende Faktoren wie z. B. Aktualität, Popularität und Verfügbarkeit von einzelnen Medien berücksichtigen. Die konzipierten Verfahren werden im Kontext eines in den Wirtschaftswissenschaften häufig genutzten Rechercheportals (EconBiz) entwickelt und in einem Testsystem systematisch evaluiert. Es werden Rankingfaktoren, die für den Bibliotheksbereich von besonderem Interesse sind, vorgestellt und exemplarisch Probleme und Herausforderungen aufgezeigt.
    Source
    Bibliothek: Forschung und Praxis. 39(2015) H.3, S.384-393
  13. Dreßler, H.: Fuzzy Information Retrieval (2008) 0.02
    0.016736811 = product of:
      0.066947244 = sum of:
        0.066947244 = weight(_text_:und in 3300) [ClassicSimilarity], result of:
          0.066947244 = score(doc=3300,freq=6.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.42443132 = fieldWeight in 3300, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.078125 = fieldNorm(doc=3300)
      0.25 = coord(1/4)
    
    Abstract
    Nach einer Erläuterung der Grundlagen der Fuzzylogik wird das Prinzip der unscharfen Suche dargestellt und die Unterschiede zum herkömmlichen Information Retrieval beschrieben. Am Beispiel der Suche nach Steinen für ein Mauerwerk wird gezeigt, wie eine unscharfe Suche in der D&WFuzzydatenbank erfolgreich durchgeführt werden kann und zu eindeutigen Ergebnissen führt.
    Source
    Information - Wissenschaft und Praxis. 59(2008) H.6/7, S.351-352
  14. Khoo, C.S.G.; Wan, K.-W.: ¬A simple relevancy-ranking strategy for an interface to Boolean OPACs (2004) 0.02
    0.016188625 = product of:
      0.0647545 = sum of:
        0.0647545 = weight(_text_:headings in 3509) [ClassicSimilarity], result of:
          0.0647545 = score(doc=3509,freq=2.0), product of:
            0.34509623 = queryWeight, product of:
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.07111865 = queryNorm
            0.18764187 = fieldWeight in 3509, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.8524013 = idf(docFreq=942, maxDocs=44421)
              0.02734375 = fieldNorm(doc=3509)
      0.25 = coord(1/4)
    
    Content
    "Most Web search engines accept natural language queries, perform some kind of fuzzy matching and produce ranked output, displaying first the documents that are most likely to be relevant. On the other hand, most library online public access catalogs (OPACs) an the Web are still Boolean retrieval systems that perform exact matching, and require users to express their search requests precisely in a Boolean search language and to refine their search statements to improve the search results. It is well-documented that users have difficulty searching Boolean OPACs effectively (e.g. Borgman, 1996; Ensor, 1992; Wallace, 1993). One approach to making OPACs easier to use is to develop a natural language search interface that acts as a middleware between the user's Web browser and the OPAC system. The search interface can accept a natural language query from the user and reformulate it as a series of Boolean search statements that are then submitted to the OPAC. The records retrieved by the OPAC are ranked by the search interface before forwarding them to the user's Web browser. The user, then, does not need to interact directly with the Boolean OPAC but with the natural language search interface or search intermediary. The search interface interacts with the OPAC system an the user's behalf. The advantage of this approach is that no modification to the OPAC or library system is required. Furthermore, the search interface can access multiple OPACs, acting as a meta search engine, and integrate search results from various OPACs before sending them to the user. The search interface needs to incorporate a method for converting the user's natural language query into a series of Boolean search statements, and for ranking the OPAC records retrieved. The purpose of this study was to develop a relevancyranking algorithm for a search interface to Boolean OPAC systems. This is part of an on-going effort to develop a knowledge-based search interface to OPACs called the E-Referencer (Khoo et al., 1998, 1999; Poo et al., 2000). E-Referencer v. 2 that has been implemented applies a repertoire of initial search strategies and reformulation strategies to retrieve records from OPACs using the Z39.50 protocol, and also assists users in mapping query keywords to the Library of Congress subject headings."
  15. Elsweiler, D.; Kruschwitz, U.: Interaktives Information Retrieval (2023) 0.02
    0.015460804 = product of:
      0.061843216 = sum of:
        0.061843216 = weight(_text_:und in 1798) [ClassicSimilarity], result of:
          0.061843216 = score(doc=1798,freq=8.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.39207286 = fieldWeight in 1798, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0625 = fieldNorm(doc=1798)
      0.25 = coord(1/4)
    
    Abstract
    Interaktives Information Retrieval (IIR) zielt darauf ab, die komplexen Interaktionen zwischen Nutzer*innen und Systemen im IR zu verstehen. Es gibt umfangreiche Literatur zu Themen wie der formalen Modellierung des Suchverhaltens, der Simulation der Interaktion, den interaktiven Funktionen zur Unterstützung des Suchprozesses und der Evaluierung interaktiver Suchsysteme. Dabei ist die interaktive Unterstützung nicht allein auf die Suche beschränkt, sondern hat ebenso die Hilfe bei Navigation und Exploration zum Ziel.
    Source
    Grundlagen der Informationswissenschaft. Hrsg.: Rainer Kuhlen, Dirk Lewandowski, Wolfgang Semar und Christa Womser-Hacker. 7., völlig neu gefasste Ausg
  16. Lanvent, A.: Know-how - Suchverfahren : Intelligente Suchmaschinen erzielen mit assoziativen und linguistischen Verfahren beste Ergebnisse. (2004) 0.02
    0.015278549 = product of:
      0.061114196 = sum of:
        0.061114196 = weight(_text_:und in 3988) [ClassicSimilarity], result of:
          0.061114196 = score(doc=3988,freq=20.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.38745102 = fieldWeight in 3988, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0390625 = fieldNorm(doc=3988)
      0.25 = coord(1/4)
    
    Content
    "Die einfachste Form der Volltextsuche ist die Phrasensuche. Hierbei gilt es, den eingegebenen Text in der exakten Schreibweise in sämtlichen relevanten Dokumenten zu finden. Anhand von Joker-Zeichen wie Stern und Fragezeichen kann der Anwender diese Art der Suche erweitern. Boole'sche Parameter verknüpfen einen, zwei oder mehrere Begriffe zu einem Suchstring. Die häufigsten Parameter lauten UND, ODER und NICHT. So lassen sich auch komplexe Anfragen starten, etwa sollen alle Dokumente gefunden werden, die die Begriffe »Schröder« oder »Schroeder«, aber nicht »Bundeskanzler« enthalten. Kennt der Anwender nicht die exakte Schreibweise oder kommen unterschiedliche Ausprägungen eines Wortes in den gesuchten Dokumenten vor, wie Deklinationen, muss er auf fehlertolerante oder linguistische Verfahren zurückgreifen. Einige Tools wie etwa Dt Search und Findword arbeiten mit Wörterbüchern, die auch Flexionen enthalten. Sucht der Nutzer etwa nach »Baum«, findet das Tool auch »Bäume« oder etwa »Baumstamm«. Bei der phonetischen Suche setzen Programme wie Documind Pro und Findword auf einen Algorithmus, der nach dem ähnlichen Klang der Wörter recherchiert. Solche Verfahren sind demnach sprachenabhängig. Sie nehmen den Suchstring »Meier« zum Anlass, auch »Mayer« oder »Meier« nachzuschlagen. Fuzzy Logic ist ein verwandtes Verfahren, das alternative Schreibweisen oder Tippfehler verzeiht. Dieses Verfahren berücksichtigt auch Abweichungen und stellt dabei fest, dass ein bestimmter Begriff zu einem Wortstamm gehört. Eine solche Methode liefert eine größere Trefferliste und findet bei Eingabe von »Microsoft« auch Dokumente mit »Mircosoft« und »Microaoft«. Die Königsdisziplin ist die Assoziative Suche, die die Recherche nach Eingabe eines beliebigen Satzes in der natürlichen Sprache startet. Das Suchkommando »Die Meistertitel von Borussia Mönchengladbach« findet im Idealfall Texte zu den Themen Fußball, Bundesliga und Netzer."
  17. Effektive Information Retrieval Verfahren in Theorie und Praxis : ausgewählte und erweiterte Beiträge des Vierten Hildesheimer Evaluierungs- und Retrievalworkshop (HIER 2005), Hildesheim, 20.7.2005 (2006) 0.01
    0.01496986 = product of:
      0.05987944 = sum of:
        0.05987944 = weight(_text_:und in 973) [ClassicSimilarity], result of:
          0.05987944 = score(doc=973,freq=120.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.37962294 = fieldWeight in 973, product of:
              10.954452 = tf(freq=120.0), with freq of:
                120.0 = termFreq=120.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.015625 = fieldNorm(doc=973)
      0.25 = coord(1/4)
    
    Abstract
    Information Retrieval hat sich zu einer Schlüsseltechnologie in der Wissensgesellschaft entwickelt. Die Anzahl der täglichen Anfragen an Internet-Suchmaschinen bildet nur einen Indikator für die große Bedeutung dieses Themas. Der Sammelbandband informiert über Themen wie Information Retrieval-Grundlagen, Retrieval Systeme, Digitale Bibliotheken, Evaluierung und Multilinguale Systeme, beschreibt Anwendungsszenarien und setzt sich mit neuen Herausforderungen an das Information Retrieval auseinander. Die Beiträge behandeln aktuelle Themen und neue Herausforderungen an das Information Retrieval. Die intensive Beteiligung der Informationswissenschaft der Universität Hildesheim am Cross Language Evaluation Forum (CLEF), einer europäischen Evaluierungsinitiative zur Erforschung mehrsprachiger Retrieval Systeme, berührt mehrere der Beiträge. Ebenso spielen Anwendungsszenarien und die Auseinandersetzung mit aktuellen und praktischen Fragestellungen eine große Rolle.
    Content
    Inhalt: Jan-Hendrik Scheufen: RECOIN: Modell offener Schnittstellen für Information-Retrieval-Systeme und -Komponenten Markus Nick, Klaus-Dieter Althoff: Designing Maintainable Experience-based Information Systems Gesine Quint, Steffen Weichert: Die benutzerzentrierte Entwicklung des Produkt- Retrieval-Systems EIKON der Blaupunkt GmbH Claus-Peter Klas, Sascha Kriewel, André Schaefer, Gudrun Fischer: Das DAFFODIL System - Strategische Literaturrecherche in Digitalen Bibliotheken Matthias Meiert: Entwicklung eines Modells zur Integration digitaler Dokumente in die Universitätsbibliothek Hildesheim Daniel Harbig, René Schneider: Ontology Learning im Rahmen von MyShelf Michael Kluck, Marco Winter: Topic-Entwicklung und Relevanzbewertung bei GIRT: ein Werkstattbericht Thomas Mandl: Neue Entwicklungen bei den Evaluierungsinitiativen im Information Retrieval Joachim Pfister: Clustering von Patent-Dokumenten am Beispiel der Datenbanken des Fachinformationszentrums Karlsruhe Ralph Kölle, Glenn Langemeier, Wolfgang Semar: Programmieren lernen in kollaborativen Lernumgebungen Olga Tartakovski, Margaryta Shramko: Implementierung eines Werkzeugs zur Sprachidentifikation in mono- und multilingualen Texten Nina Kummer: Indexierungstechniken für das japanische Retrieval Suriya Na Nhongkai, Hans-Joachim Bentz: Bilinguale Suche mittels Konzeptnetzen Robert Strötgen, Thomas Mandl, René Schneider: Entwicklung und Evaluierung eines Question Answering Systems im Rahmen des Cross Language Evaluation Forum (CLEF) Niels Jensen: Evaluierung von mehrsprachigem Web-Retrieval: Experimente mit dem EuroGOV-Korpus im Rahmen des Cross Language Evaluation Forum (CLEF)
    Footnote
    Rez. in: Information - Wissenschaft und Praxis 57(2006) H.5, S.290-291 (C. Schindler): "Weniger als ein Jahr nach dem "Vierten Hildesheimer Evaluierungs- und Retrievalworkshop" (HIER 2005) im Juli 2005 ist der dazugehörige Tagungsband erschienen. Eingeladen hatte die Hildesheimer Informationswissenschaft um ihre Forschungsergebnisse und die einiger externer Experten zum Thema Information Retrieval einem Fachpublikum zu präsentieren und zur Diskussion zu stellen. Unter dem Titel "Effektive Information Retrieval Verfahren in Theorie und Praxis" sind nahezu sämtliche Beiträge des Workshops in dem nun erschienenen, 15 Beiträge umfassenden Band gesammelt. Mit dem Schwerpunkt Information Retrieval (IR) wird ein Teilgebiet der Informationswissenschaft vorgestellt, das schon immer im Zentrum informationswissenschaftlicher Forschung steht. Ob durch den Leistungsanstieg von Prozessoren und Speichermedien, durch die Verbreitung des Internet über nationale Grenzen hinweg oder durch den stetigen Anstieg der Wissensproduktion, festzuhalten ist, dass in einer zunehmend wechselseitig vernetzten Welt die Orientierung und das Auffinden von Dokumenten in großen Wissensbeständen zu einer zentralen Herausforderung geworden sind. Aktuelle Verfahrensweisen zu diesem Thema, dem Information Retrieval, präsentiert der neue Band anhand von praxisbezogenen Projekten und theoretischen Diskussionen. Das Kernthema Information Retrieval wird in dem Sammelband in die Bereiche Retrieval-Systeme, Digitale Bibliothek, Evaluierung und Multilinguale Systeme untergliedert. Die Artikel der einzelnen Sektionen sind insgesamt recht heterogen und bieten daher keine Überschneidungen inhaltlicher Art. Jedoch ist eine vollkommene thematische Abdeckung der unterschiedlichen Bereiche ebenfalls nicht gegeben, was bei der Präsentation von Forschungsergebnissen eines Institutes und seiner Kooperationspartner auch nur bedingt erwartet werden kann. So lässt sich sowohl in der Gliederung als auch in den einzelnen Beiträgen eine thematische Verdichtung erkennen, die das spezielle Profil und die Besonderheit der Hildesheimer Informationswissenschaft im Feld des Information Retrieval wiedergibt. Teil davon ist die mehrsprachige und interdisziplinäre Ausrichtung, die die Schnittstellen zwischen Informationswissenschaft, Sprachwissenschaft und Informatik in ihrer praxisbezogenen und internationalen Forschung fokussiert.
    Im ersten Kapitel "Retrieval-Systeme" werden verschiedene Information RetrievalSysteme präsentiert und Verfahren zu deren Gestaltung diskutiert. Jan-Hendrik Scheufen stellt das Meta-Framework RECOIN zur Information Retrieval Forschung vor, das sich durch eine flexible Handhabung unterschiedlichster Applikationen auszeichnet und dadurch eine zentrierte Protokollierung und Steuerung von Retrieval-Prozessen ermöglicht. Dieses Konzept eines offenen, komponentenbasierten Systems wurde in Form eines Plug-Ins für die javabasierte Open-Source-Plattform Eclipse realisiert. Markus Nick und Klaus-Dieter Althoff erläutern in ihrem Beitrag, der übrigens der einzige englischsprachige Text im Buch ist, das Verfahren DILLEBIS zur Erhaltung und Pflege (Maintenance) von erfahrungsbasierten Informationssystemen. Sie bezeichnen dieses Verfahren als Maintainable Experience-based Information System und plädieren für eine Ausrichtung von erfahrungsbasierten Systemen entsprechend diesem Modell. Gesine Quint und Steffen Weichert stellen dagegen in ihrem Beitrag die benutzerzentrierte Entwicklung des Produkt-Retrieval-Systems EIKON vor, das in Kooperation mit der Blaupunkt GmbH realisiert wurde. In einem iterativen Designzyklus erfolgte die Gestaltung von gruppenspezifischen Interaktionsmöglichkeiten für ein Car-Multimedia-Zubehör-System. Im zweiten Kapitel setzen sich mehrere Autoren dezidierter mit dem Anwendungsgebiet "Digitale Bibliothek" auseinander. Claus-Peter Klas, Sascha Kriewel, Andre Schaefer und Gudrun Fischer von der Universität Duisburg-Essen stellen das System DAFFODIL vor, das durch eine Vielzahl an Werkzeugen zur strategischen Unterstützung bei Literaturrecherchen in digitalen Bibliotheken dient. Zusätzlich ermöglicht die Protokollierung sämtlicher Ereignisse den Einsatz des Systems als Evaluationsplattform. Der Aufsatz von Matthias Meiert erläutert die Implementierung von elektronischen Publikationsprozessen an Hochschulen am Beispiel von Abschlussarbeiten des Studienganges Internationales Informationsmanagement der Universität Hildesheim. Neben Rahmenbedingungen werden sowohl der Ist-Zustand als auch der Soll-Zustand des wissenschaftlichen elektronischen Publizierens in Form von gruppenspezifischen Empfehlungen dargestellt. Daniel Harbig und Rene Schneider beschreiben in ihrem Aufsatz zwei Verfahrensweisen zum maschinellen Erlernen von Ontologien, angewandt am virtuellen Bibliotheksregal MyShelf. Nach der Evaluation dieser beiden Ansätze plädieren die Autoren für ein semi-automatisiertes Verfahren zur Erstellung von Ontologien.
    "Evaluierung", das Thema des dritten Kapitels, ist in seiner Breite nicht auf das Information Retrieval beschränkt sondern beinhaltet ebenso einzelne Aspekte der Bereiche Mensch-Maschine-Interaktion sowie des E-Learning. Michael Muck und Marco Winter von der Stiftung Wissenschaft und Politik sowie dem Informationszentrum Sozialwissenschaften thematisieren in ihrem Beitrag den Einfluss der Fragestellung (Topic) auf die Bewertung von Relevanz und zeigen Verfahrensweisen für die Topic-Erstellung auf, die beim Cross Language Evaluation Forum (CLEF) Anwendung finden. Im darauf folgenden Aufsatz stellt Thomas Mandl verschiedene Evaluierungsinitiativen im Information Retrieval und aktuelle Entwicklungen dar. Joachim Pfister erläutert in seinem Beitrag das automatisierte Gruppieren, das sogenannte Clustering, von Patent-Dokumenten in den Datenbanken des Fachinformationszentrums Karlsruhe und evaluiert unterschiedliche Clusterverfahren auf Basis von Nutzerbewertungen. Ralph Kölle, Glenn Langemeier und Wolfgang Semar widmen sich dem kollaborativen Lernen unter den speziellen Bedingungen des Programmierens. Dabei werden das System VitaminL zur synchronen Bearbeitung von Programmieraufgaben und das Kennzahlensystem K-3 für die Bewertung kollaborativer Zusammenarbeit in einer Lehrveranstaltung angewendet. Der aktuelle Forschungsschwerpunkt der Hildesheimer Informationswissenschaft zeichnet sich im vierten Kapitel unter dem Thema "Multilinguale Systeme" ab. Hier finden sich die meisten Beiträge des Tagungsbandes wieder. Olga Tartakovski und Margaryta Shramko beschreiben und prüfen das System Langldent, das die Sprache von mono- und multilingualen Texten identifiziert. Die Eigenheiten der japanischen Schriftzeichen stellt Nina Kummer dar und vergleicht experimentell die unterschiedlichen Techniken der Indexierung. Suriya Na Nhongkai und Hans-Joachim Bentz präsentieren und prüfen eine bilinguale Suche auf Basis von Konzeptnetzen, wobei die Konzeptstruktur das verbindende Elemente der beiden Textsammlungen darstellt. Das Entwickeln und Evaluieren eines mehrsprachigen Question-Answering-Systems im Rahmen des Cross Language Evaluation Forum (CLEF), das die alltagssprachliche Formulierung von konkreten Fragestellungen ermöglicht, wird im Beitrag von Robert Strötgen, Thomas Mandl und Rene Schneider thematisiert. Den Schluss bildet der Aufsatz von Niels Jensen, der ein mehrsprachiges Web-Retrieval-System ebenfalls im Zusammenhang mit dem CLEF anhand des multilingualen EuroGOVKorpus evaluiert.
    Abschließend lässt sich sagen, dass der Tagungsband einen gelungenen Überblick über die Information Retrieval Projekte der Hildesheimer Informationswissenschaft und ihrer Kooperationspartner gibt. Die einzelnen Beiträge sind sehr anregend und auf einem hohen Niveau angesiedelt. Ein kleines Hindernis für den Leser stellt die inhaltliche und strukturelle Orientierung innerhalb des Bandes dar. Der Bezug der einzelnen Artikel zum Thema des Kapitels wird zwar im Vorwort kurz erläutert. Erschwert wird die Orientierung im Buch jedoch durch fehlende Kapitelüberschriften am Anfang der einzelnen Sektionen. Außerdem ist zu erwähnen, dass einer der Artikel einen anderen Titel als im Inhaltsverzeichnis angekündigt trägt. Sieht der Leser von diesen formalen Mängeln ab, wird er reichlich mit praxisbezogenen und theoretisch fundierten Projektdarstellungen und Forschungsergebnissen belohnt. Dies insbesondere, da nicht nur aktuelle Themen der Informationswissenschaft aufgegriffen, sondern ebenso weiterentwickelt und durch die speziellen interdisziplinären und internationalen Bedingungen in Hildesheim geformt werden. Dabei zeigt sich anhand der verschiedenen Projekte, wie gut die Hildesheimer Informationswissenschaft in die Community überregionaler Informationseinrichtungen und anderer deutscher informationswissenschaftlicher Forschungsgruppen eingebunden ist. Damit hat der Workshop bei einer weiteren Öffnung der Expertengruppe das Potential zu einer eigenständigen Institution im Bereich des Information Retrieval zu werden. In diesem Sinne lässt sich auf weitere fruchtbare Workshops und deren Veröffentlichungen hoffen. Ein nächster Workshop der Universität Hildesheim zum Thema Information Retrieval, organisiert mit der Fachgruppe Information Retrieval der Gesellschaft für Informatik, kündigt sich bereits für den 9. bis 13- Oktober 2006 an."
  18. Lanvent, A.: Praxis - Windows-Suche und Indexdienst : Auch Windows kann bei der Suche den Turbo einlegen: mit dem Indexdienst (2004) 0.01
    0.014494503 = product of:
      0.05797801 = sum of:
        0.05797801 = weight(_text_:und in 4316) [ClassicSimilarity], result of:
          0.05797801 = score(doc=4316,freq=18.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.36756828 = fieldWeight in 4316, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.0390625 = fieldNorm(doc=4316)
      0.25 = coord(1/4)
    
    Content
    "Für eine 4-GByte-Festplatte mit mehreren Partitionen sucht Windows XP im Volltextmodus weit über zwei Stunden. Der Indexdienst verkürzt diese Recherchedauer drastisch um mehr als eine Stunde. Im Gegensatz zu den Indizes der kommerziellen Suchwerkzeuge erfasst der Windows-Indexdienst nur Text-, HTML- und OfficeDateien über entsprechend integrierte Dokumentfilter. Da er weder ZIP-Files noch PDFs erkennt und auch keine E-Mails scannt, ist er mit komplexen Anfragen schnell überfordert. Standardmäßig ist der Indexdienst zwar installiert, aber nicht aktiviert. Das erledigt der Anwender über Start/Arbeitsplatz und den Befehl Verwalten aus dem Kontextmenü. In der Computerverwaltung aktiviert der Benutzer den Eintrag Indexdienst und wählt Starten aus dem Kontextmenü. Die zu indizierenden Elemente verwaltet Windows über so genannte Kataloge, mit deren Hilfe der User bestimmt, welche Dateitypen aus welchen Ordnern indiziert werden sollen. Zwar kann der Anwender neben dem Katalog System weitere Kataloge einrichten. Ausreichend ist es aber in den meisten Fällen, dem Katalog System weitere Indizierungsordner über die Befehle Neu/Verzeichnis hinzuzufügen. Klickt der Benutzer dann einen der Indizierungsordner mit der rechten Maustaste an und wählt Alle Tasks/Erneut prüfen (Vollständig), beginnt der mitunter langwierige Indizierungsprozess. Über den Eigenschaften-Dialog lässt sich allerdings der Leistungsverbrauch drosseln. Eine inkrementelle Indizierung, bei der Windows nur neue Elemente im jeweiligen Verzeichnis unter die Lupe nimmt, erreicht der Nutzer über Alle Tasks/Erneut prüfen (inkrementell). Einschalten lässt sich der Indexdienst auch über die Eigenschaften eines Ordners und den Befehl Erweitert/ln-halt für schnelle Dateisuche indizieren. Auskunft über die dem Indexdienst zugeordneten Ordner und Laufwerke erhalten Sie, wenn Sie die WindowsSuche starten und Weitere Optionen/ Andere Suchoptionen/Bevorzugte Einstellungen ändern/Indexdienst verwenden anklicken."
  19. Fichtner, K.: Boyer-Moore Suchalgorithmus (2005) 0.01
    0.014201656 = product of:
      0.056806624 = sum of:
        0.056806624 = weight(_text_:und in 989) [ClassicSimilarity], result of:
          0.056806624 = score(doc=989,freq=12.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.36014193 = fieldWeight in 989, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.046875 = fieldNorm(doc=989)
      0.25 = coord(1/4)
    
    Abstract
    Die Masse der Suchalgorithmen lässt sich in zwei grundlegend verschiedene Teilbereiche untergliedern. Auf der einen Seite stehen Algorithmen, die auf komplexen Datenstrukturen (häufig baumartig) ganze Datensätze unter Verwendung eines Indizes finden. Als geläufiger Vertreter sei hier die binäre Suche auf sortierten Arrays oder in binären Bäumen genannt. Die andere Gruppe, der sich diese Ausarbeitung widmet, dient dazu, Entsprechungen von Mustern in gegebenen Zeichenketten zu finden. Auf den folgenden Seiten werden nun zunächst einige Begriffe eingeführt, die für das weitere Verständnis und einen Vergleich verschiedener Suchalgorithmen nötig sind. Weiterhin wird ein naiver Suchalgorithmus dargestellt und mit der Idee von Boyer und Moore verglichen. Hierzu wird ihr Algorithmus zunächst informal beschrieben, dann mit Blick auf eine Implementation näher erläutert und anschließend einer Effizienzanalyse - sowohl empirisch als auch theoretisch - unterzogen. Abschließend findet eine kurze Bewertung mit Bezug auf Schwachstellen, Vorzüge und Verbesserungsmöglichkeiten statt, im Zuge derer einige prominente Modifikationen des Boyer-Moore Algorithmus vorgestellt werden.
    Content
    Ausarbeitung im Rahmen des Seminars Suchmaschinen und Suchalgorithmen, Institut für Wirtschaftsinformatik Praktische Informatik in der Wirtschaft, Westfälische Wilhelms-Universität Münster. - Vgl.: http://www-wi.uni-muenster.de/pi/lehre/ss05/seminarSuchen/Ausarbeitungen/KristoferFichtner.pdf
  20. Mayr, P.: Bradfordizing als Re-Ranking-Ansatz in Literaturinformationssystemen (2011) 0.01
    0.014201656 = product of:
      0.056806624 = sum of:
        0.056806624 = weight(_text_:und in 292) [ClassicSimilarity], result of:
          0.056806624 = score(doc=292,freq=12.0), product of:
            0.15773399 = queryWeight, product of:
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.07111865 = queryNorm
            0.36014193 = fieldWeight in 292, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.217899 = idf(docFreq=13141, maxDocs=44421)
              0.046875 = fieldNorm(doc=292)
      0.25 = coord(1/4)
    
    Abstract
    In diesem Artikel wird ein Re-Ranking-Ansatz für Suchsysteme vorgestellt, der die Recherche nach wissenschaftlicher Literatur messbar verbessern kann. Das nichttextorientierte Rankingverfahren Bradfordizing wird eingeführt und anschließend im empirischen Teil des Artikels bzgl. der Effektivität für typische fachbezogene Recherche-Topics evaluiert. Dem Bradford Law of Scattering (BLS), auf dem Bradfordizing basiert, liegt zugrunde, dass sich die Literatur zu einem beliebigen Fachgebiet bzw. -thema in Zonen unterschiedlicher Dokumentenkonzentration verteilt. Dem Kernbereich mit hoher Konzentration der Literatur folgen Bereiche mit mittlerer und geringer Konzentration. Bradfordizing sortiert bzw. rankt eine Dokumentmenge damit nach den sogenannten Kernzeitschriften. Der Retrievaltest mit 164 intellektuell bewerteten Fragestellungen in Fachdatenbanken aus den Bereichen Sozial- und Politikwissenschaften, Wirtschaftswissenschaften, Psychologie und Medizin zeigt, dass die Dokumente der Kernzeitschriften signifikant häufiger relevant bewertet werden als Dokumente der zweiten Dokumentzone bzw. den Peripherie-Zeitschriften. Die Implementierung von Bradfordizing und weiteren Re-Rankingverfahren liefert unmittelbare Mehrwerte für den Nutzer.
    Source
    Information - Wissenschaft und Praxis. 62(2011) H.1, S.3-10

Years

Languages

  • d 36
  • e 13
  • m 1
  • More… Less…

Types

  • a 37
  • x 7
  • m 3
  • r 2
  • el 1
  • s 1
  • More… Less…